【Feature Pyramid】《Deep Feature Pyramid Reconfiguration for Object Detection》

在这里插入图片描述
ECCV-2018



1 Background and Motivation

目前 feature pyramids 设计的结构仍 inefficient to integrate the semantic information over different scales.

作者争对 SSD 和 FPN 结构的缺点,在 SSD 的基础上,设计了新的 feature pyramids 结构,使得 object detection 模型具有更强的特征表达能力!


SSD 是最早的用 feature pyramids 来做 object detection 的方法之一,
在这里插入图片描述
图片来自 SSD详解

缺点是 SSD 用 shallow-layer 的神经网络来检测小目标,但是低层的网络没有高级语义信息,小目标检测的效果不理想


在这里插入图片描述
FPN 的 top-down 特征融合是线性的,too simple to capture highly-nonlinear patterns for more complicate and practical cases. Several

2 Advantages / Contributions

  • 提出了 global-local reconfigurations 的 feature pyramids,enhance multi-scale representations
  • feature pyramids 中 all scales are performed simultaneously,比 layer-by-layer transformation 更efficient

3 Method

在这里插入图片描述

1)ConvNet Feature Hierarchy

目标检测的 backbone 特征集合可以表示成如下形式
在这里插入图片描述

  • L L L :表示 backbone 的总层数
  • x l x_l xl:表示 l t h l^{th} lth 层的输出

在 SSD 模型中,预测特征图集合可以表示为
在这里插入图片描述
eg: P P P 在 VGG 中为 23

x P x_P xP 是高分辨率,limited semantic information,没有 reuse deeper and semantic information,不利于小目标的检测!

2)Lateral Connection

在 FPN 结构中,特征进行了如下的融合
在这里插入图片描述
α \alpha α β \beta β 是 Conv(没有 activation function) 和 up-sampling(双线性插值),可以理解为线性操作! 一般化的表示,FPN 对特征做了如下形式的 polynomial expansions
在这里插入图片描述

新生成的用来预测的特征图集合可以表示为
在这里插入图片描述

这种 representation power,在复杂的目标检测任务上是不够的

3.1 Deep Feature Reconfiguration

在这里插入图片描述
首先是要从线性变成非线性
在这里插入图片描述
在这里插入图片描述

其中非线性函数 H l ( X ) H_l(X) Hl(X) 表示为 a global attentiona local reconfiguration 操作!

3.1.1 Global Attention for Feature Hierarchy

用的 SENet 的方法,channel attention
在这里插入图片描述
SENet 的介绍可以参考 【SENet】《Squeeze-and-Excitation Networks》

第一步压缩分辨率,把特征图保留为一个只有通道数的向量
在这里插入图片描述

  • x l c ( i , j ) x_l^c(i,j) xlc(i,j) 表示 i i i j j j 列, c t h c^{th} cth channel

第二步接两个 fully connection
在这里插入图片描述
这里有点错误,应该是 W 1 l W_1^l W1l W 2 l W_2^l W2l δ \delta δ 是 relu, σ \sigma σ 的 sigmoid

在这里插入图片描述
把 channel dimension 的向量,压缩 r = 16 r=16 r=16 倍,
在这里插入图片描述
第三步,把学习到的通道权重,与原来的特征图做 channel-wise multiplication
在这里插入图片描述
最后用来预测的特征图集合表示为
在这里插入图片描述
这里把下标 l l l 去掉更好,加个下标多此一举

3.1.2 Local Reconfiguration

在这里插入图片描述
resnet 的结构!把 channel attention 的输出接一个 bottleneck,配合 1x1 conv 的 shortcut 分支
在这里插入图片描述
用残差的好处是,it is easier to optimize the residual mapping than to optimize the desired underlying mapping.

和 resnet 的区别是,这里是在 feature hierarchy 上进行,而 resnet 是在 one level of convolutional output

4 Experiments

4.1 Datasets

  • PASCAL VOC 2007
  • PASCAL VOC 2012
  • MS COCO datasets

4.2 PASCAL VOC 2007

VOC 07+12 trainval sets, VOC 07 test set
在这里插入图片描述
re 表示自己复现,lateral 就是 FPN

速度比较是在 batch size 1 on a machine with NVIDIA Titan X, CUDA 8.0 and cuDNN v5 条件下进行的!
在这里插入图片描述
比 FPN 效果好一点点

再看看和其它方法的比较
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
红线是召回率随着检测数量增加残生的 变化!
横坐标是检测的数量(要乘以一个系数),纵坐标是 recall 的百分比,可以看出,作者的方法在这三类中,recall 高于 90%

4.3 PASCAL VOC 2012

VOC2012 trainval for training and VOC2012 test for testing
在这里插入图片描述

4.4 MS COCO

80 k train + 40 k val 来训练,20 k test-dev 来测试(一般是 80+35 train,5 val,20 test)
在这里插入图片描述
比别人多用了 5k 来train 耶,比较公平吗?
在这里插入图片描述

5 Conclusion(own)

  • 把 SENet 和 ResNet 加到了 FPN 的结构中,创新点没有太新颖,在 COCO 上比效果的时候,能不能保证训练集是一样的呢?比别人多 5k 来比?在 COCO 上应该也比较下 SSD+FPN 和 SSD+ours 的效果,会更有说服力(voc 提了不到一个点)

我们来分析下实验的细节
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
一句话,一个公式,一个注释可以看出,原来的特征是如何融合成一个 tensor 的,也即通过 adaptive sampling 成固定大小的特征图,然后 concatenate

感觉是 X X X 通过 H H H 函数后,然后插值成不同分辨率成为新的特征图, H H H 只作用了一次,而不是 4 次(如果有理解错误的地方,欢迎指正)

### 回答1: 特征金字塔网络(Feature Pyramid Networks, FPN)是一种用于目标检测的神经网络架构。它通过在深层特征图上构建金字塔结构来提高空间分辨率,从而更好地检测小目标。FPN具有高效的多尺度特征表示和鲁棒性,在COCO数据集上取得了很好的表现。 ### 回答2: 特征金字塔网络(Feature Pyramid Networks,简称FPN)是一种用于目标检测的深度学习模型。该模型是由FAIR(Facebook AI Research)在2017年提出的,旨在解决单一尺度特征不能有效检测不同大小目标的问题。 传统的目标检测算法通常采用的是滑动窗口法,即在图像上以不同大小和不同位置进行滑动窗口的检测。但是,这种方法对于不同大小的目标可能需要不同的特征区域来进行检测,而使用单一尺度特征可能会导致对小目标的错误检测或漏检。FPN通过利用图像金字塔和多层特征提取,将不同尺度的特征合并起来,从而达到对不同大小目标的有效检测。 FPN主要分为两个部分:上采样路径(Top-Down Pathway)和下采样路径(Bottom-Up Pathway)。下采样路径主要是通过不同层级的卷积神经网络(CNN)来提取特征,每层都采用了非极大值抑制(Non-Maximum Suppression,NMS)方法来选择最具有代表性的特征。上采样路径则主要是将低层特征进行上采样操作,使其与高层特征的尺寸对齐,并与高层特征相加,实现特征融合。 FPN在目标检测中的优势体现在以下几个方面。首先,FPN可以提高模型对小目标的检测能力,同时仍保持对大目标的检测准确度。其次,FPN的特征金字塔结构可以在一次前向传递中完成目标检测,减少了计算时间。最后,FPN对于输入图像的尺寸和分辨率不敏感,可以在不同分辨率的图像上进行目标检测,从而适应多种应用场景。 总之,FPN是一种在目标检测领域中得到广泛应用的模型,其特征金字塔结构能够有效地解决单一尺度特征不足以检测不同大小目标的问题,并在检测准确率和计算效率方面取得了不错的表现。 ### 回答3: 特征金字塔网络是一种用于目标检测的深度学习模型,主要解决的问题是在不同尺度下检测不同大小的物体。在传统的卷积神经网络中,网络的特征图大小会不断减小,因此只能检测较小的物体,对于较大的物体则无法很好地检测。而特征金字塔网络则通过在底部特征图的基础上构建一个金字塔状的上采样结构,使得网络能够在不同尺度下检测不同大小的物体。 具体来说,特征金字塔网络由两个主要部分构成:共享特征提取器和金字塔结构。共享特征提取器是一个常规的卷积神经网络,用于提取输入图像的特征。而金字塔结构包括多个尺度的特征图,通过上采样和融合来获得不同尺度的特征表示。这些特征图之后被输入到后续的目标检测网络中,可以通过这些特征图来检测不同尺度的物体。 特征金字塔网络可以有效地解决目标检测任务中的尺度问题,并且在许多实际应用中表现出了优异的性能。例如,通过使用特征金字塔网络,在COCO数据集上得到的目标检测结果明显优于现有的一些目标检测算法。 总之,特征金字塔网络是一种非常有效的深度学习模型,可以处理目标检测任务中的尺度问题,提高模型在不同大小物体的检测精度。它在实际应用中具有很高的价值和应用前景。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值