【CutMix】《CutMix:Regularization Strategy to Train Strong Classifiers with Localizable Features》

在这里插入图片描述

arXiv-2020



1 Background and Motivation

最近 Regional dropout strategies 被提出以提升 CNN 模型的泛化能力(overlaying a patch of either black pixels or random noise)

缺点:it leads to information loss and inefficiency during training

CNN 对数据是饥渴的,How can we maximally utilize the deleted regions, while taking advantage of better generalization and localization using regional dropout?

作者提出 CutMix 来缓解上述问题——the removed regions are filled with patches from another training images,提升了网络的分类 / 定位 / 泛化能力
在这里插入图片描述

2 Related Work

  • Regional dropout:CutMix = Cut+fill
  • Synthesizing training data
  • Mixup:locally ambiguous and unnatural
  • Tricks for training deep networks:eg BN / weight decay / drop out,CutMix is complementary to the above methods because it operates on the data level

3 Advantages / Contributions

提出 CutMix 数据增广方法

  • no computational overhead
  • surprisingly effective on various tasks(分类半监督目标定位
  • 用 CutMix-ImageNet pretrained model as the initialized backbone of the object detection and image captioning brings overall performance improvements.
  • 提升 model robustness against input corruptions and its out-of-distribution detection performances

4 Method

在这里插入图片描述

patches are cut and pasted among training images where the ground truth labels are also mixed proportionally to the area of the patches,

在这里插入图片描述

M ∈ { 0 , 1 } W × H M \in \{0,1\}^{W \times H} M{0,1}W×H,是一个 binary mask indicating where to drop out and fill in from two images

⨀ \bigodot 是 element-wise multiplication

λ \lambda λ 服从 B e t a ( α , α ) Beta(\alpha, \alpha) Beta(α,α) 分布,文中作者把 α \alpha α 设置为了 1,也即均匀分布

随机出来的 remove and fill 区域中心坐标 r x r_x rx r y r_y ry 和长宽 r h r_h rh r w r_w rw 如下
在这里插入图片描述
随机出来的面积为 1 − λ 1-\lambda 1λ

具体选取流程如下:
在这里插入图片描述
r w r_w rw r h r_h rh 分别少了 w w w h h h

合并方式很精髓哟,哈哈

在这里插入图片描述

这就是代码的魅力,shuffle 后的 input_s 截取后覆盖掉原始数据的对应区域,进而实现 A B 图的 remove and fill

标签也合并在了一起

1)What does model learn with CutMix?
在这里插入图片描述
CutMix can take advantage of the mixed region

Mixup introduces unnatural artifacts
在这里插入图片描述

2)Analysis on validation error
在这里插入图片描述

5 Experiments

5.1 Datasets

  • ImageNet
  • CIFAR10
  • CIFAR100
  • PASCAL VOC object detection
  • MS-COCO image captioning
  • CUB2002011,弱监督,top-1 localization accuracy(IoU>0.5)

5.2 Image Classification

1)ImageNet Classification

Comparison against baseline augmentations:
在这里插入图片描述
Cut-Mix come at little or memory or computational time(无推理代价的提升)

Comparison against architectural improvements:
在这里插入图片描述

2)CIFAR Classification

在这里插入图片描述
The superior performance of Cutout and Mixup combination shows that mixing via cut and paste manner is better than interpolation, as much evidenced by CutMix performances.

CutMix for various models:
在这里插入图片描述

CutMix for CIFAR-10:
在这里插入图片描述

3)Ablation Studies
在这里插入图片描述
探索了 Beta 分布的形式,以及 feature-level CutMix

下面这个表探索了 CutMix 的形式
在这里插入图片描述
Center Gaussian CutMix 用高斯分布代替均匀分布抽样 r x r_x rx r y r_y ry
在这里插入图片描述
那 remove and fill 的区域中心分布在图片的中心的概率较大

Fixed-size CutMix 固定 r w r_w rw r h r_h rh 的尺寸为 16x16,

Scheduled CutMix,随着训练的进行,linearly increases the probability to apply CutMix,0~1

Onehot CutMix,不融合标签,mix 后,谁的面积大则采用谁的标签

Complete-label CutMix,标签融合的形式 55 开,也即 0.5 y A + 0.5 y B 0.5y_A + 0.5y_B 0.5yA+0.5yB

5.3 Weakly Supervised Object Localization

在这里插入图片描述
在这里插入图片描述
Mixup tends to make a classifier focus on small regions

more ambiguity in Mixup samples make a classifier focus on even more discriminative parts of objects

CutMix focus on learning spatially dispersed representations

5.4 Transfer Learning of Pretrained Model

在这里插入图片描述
PASCAL VOC object detection

MS-COCO image captioning(附录版)
在这里插入图片描述

5.5 Robustness and Uncertainty

adversarial samples, occluded samples, and in-between class samples
在这里插入图片描述
在这里插入图片描述
梯度上升干扰,配置 noise scale ϵ = 8 / 255 \epsilon = 8/255 ϵ=8/255
在这里插入图片描述
遮挡时 cutout 和 cutmix 伯仲之间

CutMix even improves the robustness to the unseen Mixup in-between class samples

产生 in-between class samples 的方式为
x = λ x A + ( 1 − λ ) x B x = \lambda x_A + (1-\lambda)x_B x=λxA+(1λ)xB,employ the center mask instead of the random mask,remove 的大小 0~244

在这里插入图片描述
在这里插入图片描述

From the experiments, we observe that our proposed CutMix enhances the OOD detector performance while Mixup and Cutout produce more overconfident predictions to OOD samples than the baseline

6 Conclusion / Future work

1)《A baseline for detecting misclassified and out-of-distribution examples in neural networks》(ICLR-2017)

2)《Enhancing the reliability of out-of-distribution image detection in neural networks》(ICLR-2018)

3)基于深度模型Out of Distribution(OOD)基础技术路线研究

在这里插入图片描述
在这里插入图片描述

4)关于Mixup方法的一个综述

在这里插入图片描述

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值