Support Vector Machine


1 SVM

1.1 什么是支持向量

在这里插入图片描述

1.2 SVM 最优化问题是什么?

首先我们想要最优化的是各类样本点超平面距离最远(其实也就是找到最大间隔超平面)。

  • 样本点 x x x
  • 超平面 w T x + b = 0 w^Tx+b=0 wTx+b=0
  • 样本点到超平面的距离:先看二维的情况,就是点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 到直线 A x + B y + C = 0 Ax+By + C = 0 Ax+By+C=0 的距离
    ∣ A x 0 + B y 0 + C ∣ A 2 + B 2 \frac{|Ax_0+By_0 + C|}{\sqrt{A^2+B^2}} A2+B2 Ax0+By0+C
    拓展到高维,就是点到超平面的距离:
    ∣ w T x + b ∣ ∣ ∣ w ∣ ∣ \frac{|w^Tx+b|}{||w||} wwTx+b
    其中, ∣ ∣ w ∣ ∣ = w 1 2 + w 2 2 + . . . + w d 2 ||w|| = \sqrt{w_1^2+w_2^2+...+w_d^2} w=w12+w22+...+wd2

有了距离的定义后,我们可以看如下的图:
在这里插入图片描述
发现,除了支持向量(离超平面最近的几个点)以外,其它的样本点到超平面的距离都大于 d d d,所以我们可以对所有样本点进行如下表示:

在这里插入图片描述
其中, y i = 1 y_i =1 yi=1 表示红色的样本点, y i = − 1 y_i=-1 yi=1 表示蓝色的样本点!分母 w T x i + b w^Tx_i + b wTxi+b不带绝对值,在超平面下方的点代进去确实小于0。

我们来简化一下:

在这里插入图片描述
此处,


看能不能回答如下几个问题:

  • margin 的求法,1的由来(放缩)
  • min max L 中 max 由来(min max L 等价于 带约束的最小值——目标函数)
  • min max L = max min L (强对偶)的由来(强对偶的等价条件是1.凸优化,2.满足 KKT条件)
  • min L 先求(w,b)最小值,之后 max 求 a 的最大值(二次规划方法),可以用 smo 方法,也可以用下面小例子1的方法(max 转化为 min优化问题)

小例子:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

2 SVM+soft margin

在这里插入图片描述

在这里插入图片描述

3 SVM + kernel function

在这里插入图片描述
x T y x^Ty xTy,涉及到内积,注意,先对x,y平方(核函数映射),然后再算内积,等价于先算内积再平方(核函数映射)

我们要把数据映射到高维,然后分开(目标函数中出现内积),等价于在低维先内积,再映射到高维
在这里插入图片描述
例如,高斯核函数,把每个样本变都映射成一个高斯分布

在这里插入图片描述


  1. 机器学习第二阶段:机器学习经典算法(5)——支持向量机 ↩︎

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值