陶哲轩实分析 定理 13.3.5 :紧致度量空间上的连续函数一致连续

设 $(X,d_X)$ 和 $(Y,d_Y)$ 都是度量空间,假定 $(X,d_X)$ 是紧致的,如果 $f:X\to Y$ 是函数,那么 $f$ 是连续的当且仅当 $f$ 是一致连续的.
证明:当 $f$ 是一致连续时,$f$ 显然是连续的.我们主要证明 $f$ 连续时一致连续.我们采用反证法,假若 $f$ 不是一致收敛的,意味着无论如何在 $X$ 中都存在两个点 $x_1$,$x_2$,其中 $d_X(x_1,x_2)=\delta$,无论正实数 $\delta$ 多么小,$d_Y(f(x_1),f(x_2))\geq\varepsilon$,其中     $\varepsilon$ 是一个给定的正实数. 但是这样我们就容易在 $f(X)$ 中构造出一个没有收敛子列的序列(怎么构造?),这与 $f(X)$ 的紧致性矛盾(为什么 $f(X)$ 是紧致的?),可见假设不成立,即 $f$ 是一致连续的.

转载于:https://www.cnblogs.com/yeluqing/archive/2013/03/07/3827434.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值