敌兵布阵
Problem Description
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
Sample Input
1 10 1 2 3 4 5 6 7 8 9 10 Query 1 3 Add 3 6 Query 2 7 Sub 10 2 Add 6 3 Query 3 10 End
Sample Output
Case 1: 6 33 59解题思路:
这道题目可以用线段树做,也可以用树状数组做,注意,用G++提交的话会超时,用C/C++提交就行了;线段树:#include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define maxn 50010 #define L(t) (t)<<1 #define R(t) (t)<<1|1 struct Node{ int sum; int lc,rc; }node[3*maxn]; int arr[maxn]; int ans; void create(int num,int a,int b) { node[num].lc=a; node[num].rc=b; if(a==b) { node[num].sum=arr[a]; return ; } int mid=(a+b)>>1; create(L(num),a,mid); create(R(num),mid+1,b); node[num].sum=node[L(num)].sum+node[R(num)].sum; } void updata(int num,int a,int b) { if(node[num].lc==node[num].rc) { node[num].sum+=b; return ; } int mid=(node[num].lc+node[num].rc)>>1; if(a<=mid) updata(L(num),a,b); else updata(R(num),a,b); node[num].sum=node[L(num)].sum+node[R(num)].sum; } void query(int num,int a,int b) { if(node[num].lc>=a&&node[num].rc<=b) { ans+=node[num].sum; return ; } int mid=(node[num].lc+node[num].rc)>>1; if(b<=mid) query(L(num),a,b); else if(a>mid) query(R(num),a,b); else { query(L(num),a,mid); query(R(num),mid+1,b); } } int main() { int t; scanf("%d",&t); int count=0; while(t--) { int n; scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&arr[i]); create(1,1,n); char s[100]; int x,y; printf("Case %d:\n",++count); while(scanf("%s",s)) { if(s[0]=='E') break; else { scanf("%d%d",&x,&y); if(s[0]=='A') updata(1,x,y); else if(s[0]=='S') updata(1,x,-1*y); else { ans=0; //printf("%d\n",node[1].sum); query(1,x,y); printf("%d\n",ans); } } } } }
树状数组:#include<stdio.h> #include<string.h> #define maxn 100010 int n; int c[maxn]; int lowbit(int x) { return x&-x; } int sum(int x) { int ans=0; while(x>0) { ans+=c[x]; x-=lowbit(x); } return ans; } void add(int x,int d) { while(x<=n) { c[x]+=d; x+=lowbit(x); } } int main() { int t; scanf("%d",&t); int count=0; while(t--) { memset(c,0,sizeof(c)); scanf("%d",&n); int num; for(int i=1;i<=n;i++) { scanf("%d",&num); add(i,num); } printf("Case %d:\n",++count); char str[100]; while(scanf("%s",str)) { if(str[0]=='E') break; else { int a,b; scanf("%d%d",&a,&b); if(str[0]=='A') add(a,b); else if(str[0]=='S') add(a,-b); else printf("%d\n",sum(b)-sum(a-1)); } } } }