写在前面
RAG(检索增强生成)通过检索系统找到用户问题相关的信息片段,利用大模型综合生成一个答案,极大解决了大模型幻觉、信息更新不及时等问题,已经成为了大模型落地的重要手段。
但在检索过程中,往往会检索到与问题极度相似、但又不包含答案或包含干扰答案的片段,这些答案无关片段对大模型生成答案有何影响呢?
今天正好刷到一篇相关文章,带给大家《How Easily do Irrelevant Inputs Skew the Responses of Large Language Models?》
Paper: https://arxiv.org/abs/2404.03302 Github: https://github.com/Di-viner/LLM-Robustness-to-Irrelevant-Information
先放相关结论,后面补充相关细节。
-
与常见语义无关的答案无关片段相比,LLMs更容易受到高度语义相关的答案无关片段的影响;
-
随着答案无关片段的增加,LLMs更容易分心,识别正确信息的能力降低;
-
LLMs对答案无关片段的的识别能力随着问题格式的不同有所不同,自由式问答>是非性问答>多项选择式问答;
-
系统提示词中增加“忽略无关片段”等相关内容,对LLMs的识别能力有提升,但较小;
-
存在高度语义相关的答案无关片段时,COT或者ICL会导致LLMs过度思考,识别能力变差。
数据&片段构造
将答案无关片段,分成三类:
-
无关:与问题主题无关但相似性得分高的段落
-
部分相关:不仅在相似性度量上得分高,而且与问题的主题部分内容重叠
-
相关:不仅在相似性度量上得分高,而且与问题的主题内容重叠,但不包含正确答案。
数据构造:
-
无关:通过检索器直接检索Top10的段落;
-
部分相关:从检索Top10的段落中选择一个包含subj,但缺少obj的段落,作为前半段;然后找到一个包含错误答案obj’的片段作为后半段;
-
相关:与“部分相关”相比,“相关”片段与问题高度语义相关,但并不包含正确答案,主要涉及系误导性联类型、共同特征类型和虚构轶事类型。
相关样例如下图所示,
通过Contriever model计算不同片段相似度得分,相关和部分相关与问题的相似度甚至比真实片段更高,说明数据构造有效。
评价指标:
-
误表述比率(Misrepresentation Ratio,MR):LLMs因受到答案无关信息影响而改变正确回答内容的比例,用于衡量LLMs被无关信息误导的倾向;
-
不确定比率(Uncertainty Ratio,UR):LLMs因受到答案无关信息影响而在回答中表述“不确定”的比例,用于衡量LLMs对干扰后生成答案的信心程度。
为了方便评测,采用多项选择题的形式进行LLMs评估,将“正确答案”、“错误答案”以及“不确定”作为选择供LLMs选择。
结论实验
评估了LLMs在面对三个不同语义相关性级别的答案无关片段时的表现,如下表所示,随着片段的相关性增高,不同模型的效果均有所下降,对于干扰后生成的答案的信心更足。闭源模型的效果远好于开源模型。
PS:开源模型只做了Llama2-7B,感觉应该补充补充~
随着片段个数的不断增加,LLMs分心更严重,如下表所示,随着答案无关片段的数据增加,更愿意选择无关答案。
为了方便评估,选择多项选择的形式来对LLMs进行分析。但其他形式的问法表现如何?如下表所示,自由问答形式的问题受答案无关片段影响最小、其次是是否类型,影响最大的是多项选择式问题。
PS:对于自由式问题由于没有约束,答案较为散乱,不易评估,由采用了GPT3.5进行了答案对齐操作,人工抽检300条,准确率在97%,认为可靠。
忽略式Prompt对结果有微弱的改善,COT、忽略式Prompt+ICL对结果有害,效果变得更差。
最后的最后
感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。
因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
