阿里Qwen3 全部情报汇总,本地部署指南,性能全面超越 DeepSeek R1

前言

图片

开源 8 款模型:6 款 Dense 模型 +2 款 MoE 模型

技术细节大家可以看看 Qwen 技术博客,建议点开看看,干货很多:https://qwenlm.github.io/blog/qwen3/

图片

8 个不同尺寸的模型,照顾到了所有场景:

6 款 Dense 模型:

0.6B、1.7B、4B、8B、14B、32B

2 款 MoE 模型:

Qwen3-235B-A22B (MoE, 总大小 235B, 激活参数 22B, 上下文 128K)

Qwen3-30B-A3B (MoE, 总大小 30B, 激活参数 3B, 上下文 128K)

混合思维模式,搭载了 thinking 开关,可以直接手动控制要不要开启 thinking

最大的这个 Qwen3-235B-A22B 在强劲性能的基础上,部署成本仅为 Deepseek R1 的 35%。

Qwen3-30B-A3B 的激活参数只有 3B,性能却可以跟 QWQ-32B 打平,成本只有 10%,可以在消费级显卡上部署。

0.6B 的小参数模型适合在移动设备上部署。

图片

在性能上 Qwen 3 的每个尺寸得分都是同尺寸开源最强。

Qwen3-235B-A22B 在代码、数学、通用能力等基准测试中,与 DeepSeek-R1、o1、o3-mini、Grok-3 和 Gemini-2.5-Pro 相比,表现出极具竞争力的结果。

此外,小型 MoE 模型 Qwen3-30B-A3B 的激活参数数量是 QwQ-32B 的 10%,表现更胜一筹

图片

正如博客所说,Qwen 朋友圈非常强大,昨晚已发布,一众伙伴就 0day 级支持

图片

你可以在 Qwen 官网直接与 Qwen3v 不同参数模型直接对话:https://chat.qwen.ai/

图片

本地部署

ollama

模型页:https://ollama.com/library/qwen3

运行:ollama run qwen3

其他尺寸,在后面加参数即可,比如:ollama run qwen3:32b

可以在提示词后输入 /no_think 来切换 Ollama 中的无思考模式。

备注⚠️:ollama 运行的是量化版,效果有折扣

LM Studio

地址:https://lmstudio.ai/

图片

图片

vLLM

图片

需要升级到 v0.8.4 以上,最好 v0.8.5

地址:https://github.com/vllm-project/vllm/issues/17327

vllm serve Qwen/Qwen3-235B-A22B-FP8 --enable-reasoning --reasoning-parser deepseek_r1 --tensor-parallel-size 4

SGLang

需要升级到SGLang 0.4.6.post1

地址:https://github.com/sgl-project/sglang

pip3 install "sglang[all]>=0.4.6.post1"

python3 -m sglang.launch_server --model Qwen/Qwen3-235B-A22B --tp 8 --reasoning-parser qwen3

python3 -m sglang.launch_server --model Qwen/Qwen3-235B-A22B-FP8 --tp 4 --reasoning-parser qwen3

图片

CPU 部署

llama.cpp

可以用 llama.cpp 运行起 Qwen3 量化版本、动态量化版本!

地址:https://huggingface.co/collections/unsloth/qwen3-680edabfb790c8c34a242f95

OpenRouterAI

openrouter 提供了免费的 API

地址:https://openrouter.ai/models?order=newest&q=qwen3

图片

KTransformer

Xeon 铂金 4 代 + 4090 运行 Qwen3-235B-A22B 单个请求可以达到 13.8 token/s, 4 个请求并行可以达到总计 24.4 token/s

地址:http://github.com/kvcache-ai/ktransformers/blob/main/doc/en/AMX.md

Mac

图片

Mac 上也可以跑 Qwen3 了

地址:https://github.com/ml-explore/mlx-lm/commit/5c2c18d6a3ea5f62c5b6ae7dda5cd9db9e8dab16

pip install -U mlx-lm
# or
conda install -c conda-forge mlx-lm

支持设备

  • iPhone: 0.6B, 4B
  • Macbook: 8B, 30B, 3B/30B MoE
  • M2, M3 Ultra: 22B/235B MoE

Qwen3 优点还有很多,我正在下载,随后再发本地部署后的测试情况:

  • Qwen3 是全球最强开源模型,性能全面超越 DeepSeek R1,国内第一个敢说全面超越 R1 的模型,之前都是比肩
  • Qwen3 是国内首个混合推理模型,复杂答案深度思考,简单答案直接秒回,自动切换,提升智力 + 节省算力双向奔赴
  • 模型部署要求大幅降低,旗舰模型仅需 4 张 H20 就能本地部署,部署成本估算下来是能比 R1 下降超 6 成
  • Agent 能力大幅提升,原生支持 MCP 协议,提升了代码能力,国内的 Agent 工具都在等它
  • 支持 119 种语言和方言,包括爪哇语、海地语等地方性语言,全世界都可以用上 AI
  • 训练数据 36 万亿 token,相比 Qwen2.5 直接翻倍,不仅从网络抓取内容,还大量提取 PDF 的内容、大量合成代码片段
  • 模型部署要求大幅降低,旗舰模型仅需 4 张 H20 就能本地部署,是 R1 的三分之一

图片

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

### DeepSeek-R1-Distill-Qwen-1.5B 模型本地部署教程 #### 准备工作 为了成功部署 DeepSeek-R1-Distill-Qwen-1.5B 模型,环境配置至关重要。确保安装 Python 3.x 版本以及必要的依赖库[^1]。 #### 安装依赖项 通过 pip 工具来安装所需的软件包: ```bash pip install torch transformers accelerate ``` 这些工具提供了运行深度学习模型所需的核心功能和支持加速计算的能力。 #### 下载预训练模型 利用 Hugging Face 的 `transformers` 库可以方便地获取预训练好的 Qwen 模型权重文件: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "DeepSeek-R1-Distill-Qwen-1.5B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) ``` 这段代码会自动下载并缓存指定名称下的模型及其配套词表。 #### 加载与推理设置 完成上述准备工作之后,就可以加载已经保存下来的模型实例来进行预测操作了。下面是一个简单的例子展示如何使用该模型生成文本回复: ```python import torch def generate_response(prompt_text): inputs = tokenizer(prompt_text, return_tensors="pt").input_ids.to('cuda' if torch.cuda.is_available() else 'cpu') outputs = model.generate(inputs, max_length=50, num_return_sequences=1) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response ``` 此函数接收一段提示作为输入参数,并返回由模型产生的相应输出字符串。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值