前言
要弄清楚DeepSeek等大语言模型(LLM)对显卡的要求,需结合其应用场景(训练、推理)和模型规模。
训练大型模型(如百亿参数以上,70B)时,推荐显存≥80GB的显卡(如NVIDIA A100/H100),特别是进行全参数训练的情况下。
如果只是对中等模型(十亿参数,7B)进行推理,则需16GB–24GB显存的显卡(如RTX 3090/4090或A10/A6000)。
对于本地轻量级推理任务,最低需8GB显存的显卡(如RTX 3060/4060)。
一、训练(Training)
模型训练(Training)是什么? 模型训练(Training)是机器学习和深度学习中的一个核心过程,通过使用大量的数据来调整和优化模型的参数,使其能够执行特定的任务或做出准确的预测。
一、选择模型架构
根据任务类型和数据特点,选择合适的模型架构。例如,对于图像识别任务,可以选择卷积神经网络(CNN);对于序列预测任务,可以选择循环神经网络(RNN)或Transformer等。
二、准备数据
对原始数据进行必要的预处理,如数据增强(如旋转、缩放、翻转等)以及归一化或标准化等,以提高模型的学习效果和泛化能力。同时将数据集划分为训练集、验证集和测试集。训练集用于训练模型,验证集用于调整模型参数和选择最优模型,测试集用于评估模型的最终性能。
三、设置训练参数
确定适当的超参数,如学习率、批处理大小、训练周期(或迭代次数)、优化器等。这些参数对模型的训练效果和速度有重要影响。
如何计算模型训练时内存需求? 模型计算显存主要由模型参数、优化器状态、梯度信息以及激活值等多方面因素共同决定。
总内存 = 模型参数内存 + 激活内存 + 梯度内存 + 优化器状态内存 + KV缓存内存 + 额外开销**(如临时张量、内存碎片化等),额外开销通常可以估算为总内存需求的一定比例(如10-20%)。**
假设有一个拥有10亿个参数的模型,使用float16精度进行训练,批大小为32,序列长度为512,隐藏层大小为4096,使用Adam优化器。
-
模型参数内存 = 700亿 × 1.86 ≈ 130GB
-
激活内存(前向 + 反向) = 80层 × 288MB × 2 ≈ 45GB
-
梯度内存 = 700亿 × 1.86 ≈ 130GB(梯度与参数量相同,数据类型为 float16)
-
优化器状态内存 = 2 × 130.4GB = 260.8GB(Adam需要维护一阶矩和二阶矩)
-
缓冲区内存 = 框架开销(PyTorch/TensorFlow):4-8 GB
-
KV缓存内存 = 2 × 1 × 80 × 64 × 128 × 2048 × 2字节 ≈ 5.24GB
-
额外开销 = (130GB + 45GB + 130GB + 260GB + 4 + 5) × 10% = 50GB
**总内存需求约为600GB(具体值取决于激活内存和额外开销的大小),**需多卡并行(如A100 80G × 8)。
二、推理(Inference)
什么是模型推理(Inference)? 在模型训练完成后,使用训练好的模型对新数据进行预测或生成的过程。
在模型训练阶段,模型通过大量数据的学习,掌握了某种特定的能力或模式。 而在推理阶段,模型则利用这种能力对新的、未见过的数据进行处理,以产生预期的输出。
训练好的大语言模型(LLM)可以导出为可部署格式(如ONNX、PyTorch、TensorFlow模型文件),并保存模型权重和配置文件。在部署平台上加载模型后进行初始化,就可以开始进行模型推理。
如何计算模型推理时内存需求?模型推理显存主要取决于模型参数、激活值、KV缓存以及缓冲区内存等,主要取决于模型参数。
总内存=模型参数内存+激活内存+KV缓存内存+缓冲区内存
以DeepSeek-R1 70B模型为例,使用float16类型,序列长度为2048,批量大小为1,隐藏层层数为80,隐藏层维度为8192,注意力头数量为64,头维度为128,使用KV缓存。
- 模型参数内存 = 700亿 × 1.86 ≈ 130GB
- 激活内存 = 80层 × 288MB=22.5GB
- KV缓存内存 = 2 × 1 × 80 × 64 × 128 × 2048 × 2 ≈ 5.24GB(2×batch_size×num_layers×num_heads×head_dim×seq_len×2字节)
- 缓冲区内存 = 框架开销(PyTorch/TensorFlow)约 4 GB
总内存需求约为160GB(具体值取决于激活内存和额外开销的大小),需多卡并行(如****4090 24G × 8)。
最后的最后
感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。
为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。
这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。
这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
