λ矩阵学习

λ \lambda λ矩阵

定义

a i j ( λ ) ( i = 1 , 2 , … , m ; j = 1 , 2 , … , n ) a_{ij}(\lambda)(i=1,2,\dots,m;j=1,2,\dots,n) aij(λ)(i=1,2,,m;j=1,2,,n)为数域 P P P上的多项式,以 a i j ( λ ) a_{ij}(\lambda) aij(λ)为元素的 m × n m\times n m×n矩阵
A ( λ ) = ( a 11 ( λ ) a 12 ( λ ) ⋯ a 1 n ( λ ) a 21 ( λ ) a 22 ( λ ) ⋯ a 2 n ( λ ) ⋮ ⋮ ⋮ a n 1 ( λ ) a n 2 ( λ ) ⋯ a n n ( λ ) ) A(\lambda)= \begin{pmatrix} a_{11}(\lambda)& a_{12}(\lambda)&\cdots &a_{1n}(\lambda)\\ a_{21}(\lambda)& a_{22}(\lambda)&\cdots &a_{2n}(\lambda)\\ \vdots & \vdots && \vdots\\ a_{n1}(\lambda)& a_{n2}(\lambda)&\cdots &a_{nn}(\lambda) \end{pmatrix} A(λ)=a11(λ)a21(λ)an1(λ)a12(λ)a22(λ)an2(λ)a1n(λ)a2n(λ)ann(λ)
称为 λ \bold{\lambda} λ矩阵多项式矩阵,这样的矩阵的全体记为 P [ λ ] m × n P\left[\lambda \right]^{m\times n} P[λ]m×n

λ \lambda λ矩阵 A ( λ ) A(\lambda) A(λ)至少有一个 r ( r ≥ 1 ) r(r\ge 1) r(r1)阶子式不是零多项式,而一切 r + 1 r+1 r+1阶子式(如果有的话)都是零多项式,则称 A ( λ ) A(\lambda) A(λ) r r r,记为 r a n k A ( λ ) rankA(\lambda) rankA(λ)
(这里说的零多项式,是恒等于0,不是 λ \lambda λ取具体的数带进去)

零矩阵的的秩定义为 0 0 0,若 n n n λ \lambda λ矩阵的秩为 n n n,则称 A ( λ ) A(\lambda) A(λ)为满秩矩阵或非奇异的

A ( λ ) A(\lambda) A(λ) n n n λ \lambda λ矩阵,若存在 n n n λ \lambda λ矩阵 B ( λ ) B(\lambda) B(λ)使得
A ( λ ) B ( λ ) = B ( λ ) A ( λ ) = I A(\lambda)B(\lambda)=B(\lambda)A(\lambda)=I A(λ)B(λ)=B(λ)A(λ)=I
则称 A ( λ ) A(\lambda) A(λ)为可逆的, B ( λ ) B(\lambda) B(λ) A ( λ ) A(\lambda) A(λ)的逆矩阵,记为 A ( λ ) − 1 A(\lambda)^{-1} A(λ)1

注意 λ \lambda λ矩阵中,可逆和满秩并不等价

可逆充要条件

n n n λ \lambda λ矩阵 A ( λ ) A(\lambda) A(λ)可逆的充要条件是 A ( λ ) A(\lambda) A(λ)的行列式为一个非零常数

证明:
必要性:

A ( λ ) B ( λ ) = B ( λ ) A ( λ ) = I A(\lambda)B(\lambda)=B(\lambda)A(\lambda)=I A(λ)B(λ)=B(λ)A(λ)=I
两边同取行列式
∣ A ( λ ) ∣ ∣ B ( λ ) ∣ = 1 \left| A(\lambda) \right| \left| B(\lambda)\right|=1 A(λ)B(λ)=1
所以 ∣ A ( λ ) ∣ , ∣ B ( λ ) ∣ \left| A(\lambda) \right| ,\left| B(\lambda)\right| A(λ),B(λ)均为非零常数

充分性:

∣ A ( λ ) ∣ = c ≠ 0 \left|A(\lambda)\right|=c\neq 0 A(λ)=c=0
( 1 c a d j   A ( λ ) ) A ( λ ) = I (\frac{1}{c}adj\ A(\lambda))A(\lambda)=I (c1adj A(λ))A(λ)=I
( a d j adj adj表示伴随矩阵)
所以 A ( λ ) A(\lambda) A(λ)可逆

初等变换

(1)对调两行(列)
(2)用一个不为零的数 k k k乘任一行(列)
(3)用 λ \lambda λ的多项式 ϕ ( λ ) \phi(\lambda) ϕ(λ)乘某行(列)的所有元素,并加到另一行(列)的对应元素上去
上述3种初等变换有相应的3种初等矩阵
记为 I ( i , j ) , I ( i ( k ) ) , I ( j ( ϕ ) , i ) I(i,j),I(i(k)),I(j(\phi),i) I(i,j),I(i(k)),I(j(ϕ),i)
显然他们可逆且满秩
I ( i , j ) − 1 = I ( i , j ) I(i,j)^{-1}=I(i,j) I(i,j)1=I(i,j)
I ( i ( k ) ) − 1 = I ( i ( 1 k ) ) I(i(k))^{-1}=I(i(\frac{1}{k})) I(i(k))1=I(i(k1))
I ( j ( ϕ ) , i ) − 1 = I ( j ( − ϕ ) , i ) I(j(\phi),i)^{-1}=I(j(-\phi),i) I(j(ϕ),i)1=I(j(ϕ),i)
左乘或右乘初等矩阵不改变 A ( λ ) A(\lambda) A(λ)的秩

相抵

貌似也叫等价
如果 A ( λ ) A(\lambda) A(λ)经过有限次初等变换后变成 B ( λ ) B(\lambda) B(λ),记为 A ( λ ) ≃ B ( λ ) A(\lambda)\simeq B(\lambda) A(λ)B(λ)
我曾经以为那个符号是合同
相抵满足自反性,对称性,传递性
所以相抵也是一种等价关系

相抵充要条件

A ( λ ) ≃ B ( λ ) A(\lambda)\simeq B(\lambda) A(λ)B(λ)的充要条件是存在两个可逆矩阵 P ( λ ) , Q ( λ ) P(\lambda),Q(\lambda) P(λ),Q(λ),使得
B ( λ ) = P ( λ ) A ( λ ) Q ( λ ) B(\lambda)=P(\lambda)A(\lambda)Q(\lambda) B(λ)=P(λ)A(λ)Q(λ)

证明:
根据定义,由有限次初等变换,
所以存在一系列初等矩阵 P 1 , P 2 , … , P r P_1,P_2,\dots,P_{r} P1P2,,Pr Q 1 , Q 2 , … , Q t Q_1,Q_2,\dots,Q_t Q1,Q2,,Qt使得
B ( λ ) = P r P r − 1 … P 1 A ( λ ) Q 1 Q 2 … Q t B(\lambda)=P_r P_{r-1}\dots P_1 A(\lambda) Q_1 Q_2 \dots Q_t B(λ)=PrPr1P1A(λ)Q1Q2Qt
P ( λ ) = P 1 , P 2 , … , P r , Q ( λ ) = Q 1 , Q 2 , … , Q t P(\lambda)=P_1,P_2,\dots,P_{r},Q(\lambda)=Q_1,Q_2,\dots,Q_t P(λ)=P1P2,,Pr,Q(λ)=Q1,Q2,,Qt
显然 P ( λ ) , Q ( λ ) P(\lambda),Q(\lambda) P(λ),Q(λ)可逆
所以
B ( λ ) = P ( λ ) A ( λ ) Q ( λ ) B(\lambda)=P(\lambda)A(\lambda)Q(\lambda) B(λ)=P(λ)A(λ)Q(λ)

由此可知,矩阵相抵,秩相同,但是反之不成立
矩阵相抵,则行列式差一个非零常数(因为初等矩阵的行列式为 − 1 , k , 1 -1,k,1 1,k,1,同取行列式,就很显然了)

λ \lambda λ矩阵在相抵下的标准型

引理

λ \lambda λ矩阵中左上角元素 a 11 ( λ ) ≠ 0 a_{11}(\lambda)\neq 0 a11(λ)=0, A ( λ ) A(\lambda) A(λ)至少有一个元素不能被它整除,则一定可以找到与 A ( λ ) A(\lambda) A(λ)相抵的矩阵 B ( λ ) B(\lambda) B(λ),他的左上角元素也不为0,但是次数比 a 11 ( λ ) a_{11}(\lambda) a11(λ)的次数低

证明:
case 1:
若在 A ( λ ) A(\lambda) A(λ)的第1列中有元素 a i 1 ( λ ) a_{i1}(\lambda) ai1(λ)不能被 a 11 ( λ ) a_{11}(\lambda) a11(λ)整除,即
a i 1 ( λ ) = a 11 ( λ ) q ( λ ) + r ( λ ) a_{i1}(\lambda)=a_{11}(\lambda)q(\lambda)+r(\lambda) ai1(λ)=a11(λ)q(λ)+r(λ)
其中 r ( λ ) ≠ 0 r(\lambda)\neq 0 r(λ)=0,且次数比 a 11 ( λ ) a_{11}(\lambda) a11(λ)
此时 B ( λ ) = I ( 1 , i ) I ( 1 ( q ( λ ) , i ) A ( λ ) B(\lambda)=I(1,i)I(1(q(\lambda),i)A(\lambda) B(λ)=I(1,i)I(1(q(λ),i)A(λ),其左上角元素为 r ( λ ) r(\lambda) r(λ)
满足条件
case2:
若在 A ( λ ) A(\lambda) A(λ)的第1行中有元素 a 1 i ( λ ) a_{1i}(\lambda) a1i(λ)不能被 a 11 ( λ ) a_{11}(\lambda) a11(λ)整除

作法与case1 差不多

case3:
A ( λ ) A(\lambda) A(λ)中第1行,第1列都可以被 a 11 ( λ ) a_{11}(\lambda) a11(λ)整除,但是 a i j ( λ ) ( i > 1 , j > 1 ) a_{ij}(\lambda)(i>1,j>1) aij(λ)(i>1,j>1)不能被 a 11 ( λ ) a_{11}(\lambda) a11(λ)整除

不妨设 a i 1 ( λ ) = a 11 ( λ ) ϕ ( λ ) a_{i1}(\lambda)=a_{11}(\lambda)\phi(\lambda) ai1(λ)=a11(λ)ϕ(λ)
C ( λ ) = I ( i ( 1 ) , 1 ) I ( 1 ( − ϕ ( λ ) ) , i ) A ( λ ) C(\lambda)=I(i(1),1)I(1(-\phi(\lambda)),i)A(\lambda) C(λ)=I(i(1),1)I(1(ϕ(λ)),i)A(λ)
此时 c 1 j = a i j ( λ ) + ( 1 − ϕ ( λ ) ) a 1 j ( λ ) c_{1j}=a_{ij}(\lambda)+(1-\phi(\lambda))a_{1j}(\lambda) c1j=aij(λ)+(1ϕ(λ))a1j(λ)
因为 a 11 ( λ ) ∣ a 1 j ( λ ) a_{11}(\lambda)\mid a_{1j}(\lambda) a11(λ)a1j(λ) a 11 ( λ ) ∤ a i j ( λ ) a_{11}(\lambda) \nmid a_{ij}(\lambda) a11(λ)aij(λ),所以 a 11 ( λ ) ∤ c 1 j ( λ ) a_{11}(\lambda) \nmid c_{1j}(\lambda) a11(λ)c1j(λ)
然后就转成了case2

施密特标准形

A ( λ ) ∈ P [ λ ] m × n A(\lambda)\in P\left[ \lambda \right]^{m\times n} A(λ)P[λ]m×n,且 r a n k ( A ( λ ) ) = r rank(A(\lambda))=r rank(A(λ))=r,
A ( λ ) A(\lambda) A(λ)相抵于如下对角形,称为 A ( λ ) A(\lambda) A(λ)的施密特标准形
A ( λ ) ≃ ( d 1 ( λ ) d 2 ( λ ) ⋱ d r ( λ ) 0 ⋱ 0 ) A(\lambda) \simeq \begin{pmatrix} d_1(\lambda)&&&&&&\\ &d_2(\lambda)&&&&&\\ &&\ddots&&&&\\ &&&d_r(\lambda)&&&\\ &&&&0&&\\ &&&&&\ddots&\\ &&&&&&0\\ \end{pmatrix} A(λ)d1(λ)d2(λ)dr(λ)00
其中 r ≤ m i n ( m , n ) , d i ( λ ) ( i = 1 , 2 , …   ) r\le min(m,n),d_{i}(\lambda)(i=1,2,\dots) rmin(m,n),di(λ)(i=1,2,)是首1的多项式(最高次的系数为1)
d i − 1 ( λ ) ∣ d i ( λ ) ( i = 2 , 3 , … , r ) d_{i-1}(\lambda) \mid d_{i}(\lambda)(i=2,3,\dots,r) di1(λ)di(λ)(i=2,3,,r)

证明:
不妨设 a 11 ( λ ) ≠ 0 a_{11}(\lambda)\neq 0 a11(λ)=0,否则可以通过初等变换,使得左上角元素不为0

如果 a 11 ( λ ) a_{11}(\lambda) a11(λ)不能整除 A ( λ ) A(\lambda) A(λ)的所有元素,
根据引理,可以找到一个与 A ( λ ) A(\lambda) A(λ)相抵的矩阵 B 1 ( λ ) B_{1}(\lambda) B1(λ),他的左上角元素 b 1 ( λ ) ≠ 0 b_{1}(\lambda)\neq 0 b1(λ)=0,且次数比 a 11 ( λ ) a_{11}(\lambda) a11(λ)
如果 b 1 ( λ ) b_{1}(\lambda) b1(λ)不能整除 B ( λ ) B(\lambda) B(λ)的所有元素,可以继续根据引理操作。
因为左上角元素次数越来越低,总是可以在有限次操作后得到 λ \lambda λ矩阵 B s ( λ ) B_s(\lambda) Bs(λ),他的左上角元素 b s ( λ ) ≠ 0 b_{s}(\lambda)\neq 0 bs(λ)=0而且可以整除 B s ( λ ) B_{s}(\lambda) Bs(λ)的所有元素
b i j ( λ ) = b s ( λ ) q i j ( λ ) b_{ij}(\lambda)=b_{s}(\lambda)q_{ij}(\lambda) bij(λ)=bs(λ)qij(λ)
通过初等变换,
B s ( λ ) ≃ ( b s ( λ ) 0 T 0 A 1 ( λ ) ) B_{s}(\lambda)\simeq \begin{pmatrix} b_{s}(\lambda) & \bold{0}^T\\ \bold{0}& A_{1}(\lambda)\\ \end{pmatrix} Bs(λ)(bs(λ)00TA1(λ))
显然 A 1 ( λ ) A_{1}(\lambda) A1(λ)的元素是 b i j ( λ ) b_{ij}(\lambda) bij(λ)的组合,也是 b s ( λ ) b_{s}(\lambda) bs(λ)的组合
也就是说, b s ( λ ) b_{s}(\lambda) bs(λ)可以整除 A 1 ( λ ) A_{1}(\lambda) A1(λ)中的所有元素

接着如果 A 1 ( λ ) ≠ 0 A_{1}(\lambda)\neq 0 A1(λ)=0,则可以继续作上面的操作
直到 A t ( λ ) = 0 A_{t}(\lambda)=0 At(λ)=0
证毕

不变音为与初等因子

不变因子

λ \lambda λ矩阵 A ( λ ) A(\lambda) A(λ)化为施密特标准形后,其对角元素 d 1 ( λ ) , … , d r ( λ ) d_{1}(\lambda),\dots,d_{r}(\lambda) d1(λ),,dr(λ)称为 A ( λ ) A(\lambda) A(λ)的不变因子

行列式因子

A ( λ ) A(\lambda) A(λ)的秩为 r r r,对于正整数 k ( 1 ≤ k ≤ r ) k(1\le k\le r) k(1kr), A ( λ ) A(\lambda) A(λ)中必有非零的 k k k阶子式,把 A ( λ ) A(\lambda) A(λ)的全部 k k k阶子式的最大公因式称为 A ( λ ) A(\lambda) A(λ) k k k阶行列式因子,记为 D k ( λ ) D_{k}(\lambda) Dk(λ)

引理

∣ a 11 + b 11 a 12 + b 12 ⋯ a 1 n + b 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ ∣ = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ ∣ + ∣ b 11 b 12 ⋯ b 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ ∣ \left|\begin{array}{cccc} a_{11}+b_{11}&a_{12}+b_{12}&\cdots&a_{1n}+b_{1n}\\ a_{21}&a_{22}&\cdots & a_{2n}\\ \cdots&\cdots&\cdots&\cdots\\ \end{array}\right|=\left|\begin{array}{cccc} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots & a_{2n}\\ \cdots&\cdots&\cdots&\cdots\\ \end{array}\right|+\left|\begin{array}{cccc} b_{11}&b_{12}&\cdots&b_{1n}\\ a_{21}&a_{22}&\cdots & a_{2n}\\ \cdots&\cdots&\cdots&\cdots\\ \end{array}\right| a11+b11a21a12+b12a22a1n+b1na2n=a11a21a12a22a1na2n+b11a21b12a22b1na2n
证明:
慢慢数归

相抵的 λ \lambda λ矩阵具有相同的秩和相同的各阶行列式因子

相抵的 λ \lambda λ矩阵具有相同的秩和相同的各阶行列式因子

证明:
只要证明 λ \lambda λ矩阵经过一次初等变换后,秩和行列式因子不变

λ \lambda λ矩阵 A ( λ ) A(\lambda) A(λ)经过一次初等行变换变成了 B ( λ ) B(\lambda) B(λ),
f ( λ ) f(\lambda) f(λ) g ( λ ) g(\lambda) g(λ)分别是 A ( λ ) A(\lambda) A(λ) B ( λ ) B(\lambda) B(λ)的行列式因子,
针对3种初等变换来证明 f ( λ ) = g ( λ ) f(\lambda)=g(\lambda) f(λ)=g(λ)

case1:
交换 A ( λ ) A(\lambda) A(λ)的两行得到 B ( λ ) B(\lambda) B(λ),此时 B ( λ ) B(\lambda) B(λ)的每个 k k k阶子式要么等于 A ( λ ) A(\lambda) A(λ)的某一个 k k k阶子式,要么等于 A ( λ ) A(\lambda) A(λ)的某一个 k k k阶子式的 − 1 -1 1倍,因此 f ( λ ) ∣ g ( λ ) f(\lambda)\mid g(\lambda) f(λ)g(λ)

case2:
用非零的数 a a a A ( λ ) A(\lambda) A(λ)的某一行得到 B ( λ ) B(\lambda) B(λ),这时此时 B ( λ ) B(\lambda) B(λ)的每个 k k k阶子式要么等于 A ( λ ) A(\lambda) A(λ)的某一个 k k k阶子式,要么等于 A ( λ ) A(\lambda) A(λ)的某一个 k k k阶子式的 a a a倍,因此 f ( λ ) ∣ g ( λ ) f(\lambda)\mid g(\lambda) f(λ)g(λ)

case3:
A ( λ ) A(\lambda) A(λ) j j j行的 ϕ ( λ ) \phi(\lambda) ϕ(λ)倍加到第 i i i行得到 B ( λ ) B(\lambda) B(λ),这时 B ( λ ) B(\lambda) B(λ) k k k阶子式有四种情况,
(1)包含 i i i行,包含 j j j
(2)包含 i i i行但是不包含 j j j
(3)包含 j j j行但是不包含 i i i
(4)不包含 i i i行,不包含 j j j
第(1),(3),(4)种情况不改变原来的 k k k阶子式
第(2)种根据引理,为原来的 k k k阶子式 ± ϕ ( λ ) ∗ \pm \phi(\lambda)* ±ϕ(λ)原来的 k k k阶子式
因此 f ( λ ) ∣ g ( λ ) f(\lambda)\mid g(\lambda) f(λ)g(λ)

综上所述 f ( λ ) ∣ g ( λ ) f(\lambda) \mid g(\lambda) f(λ)g(λ)

由可逆性,设 λ \lambda λ矩阵 B ( λ ) B(\lambda) B(λ)经过一次初等行变换变成了 A ( λ ) A(\lambda) A(λ)
所以 g ( λ ) ∣ f ( λ ) g(\lambda)\mid f(\lambda) g(λ)f(λ),所以 f ( λ ) = g ( λ ) f(\lambda)=g(\lambda) f(λ)=g(λ)

如果 A ( λ ) A(\lambda) A(λ) k k k阶子式全为0,则 f ( λ ) = 0 f(\lambda)=0 f(λ)=0,进而 g ( λ ) = 0 g(\lambda)=0 g(λ)=0, B ( λ ) B(\lambda) B(λ) k k k阶子式全为0,反之亦然,即有相同的行列式因子和秩

证毕

推论

利用 A ( λ ) A(\lambda) A(λ)的施密特标准形
{ D 1 ( λ ) = d 1 ( λ ) D 2 ( λ ) = d 1 ( λ ) d 2 ( λ ) ⋯ D r ( λ ) = d 1 ( λ ) d 2 ( λ ) ⋯ d r ( λ ) \begin{cases} D_1(\lambda)=d_1(\lambda)\\ D_2(\lambda)=d_1(\lambda)d_2(\lambda)\\ \cdots\\ D_r(\lambda)=d_1(\lambda)d_2(\lambda)\cdots d_{r}(\lambda)\\ \end{cases} D1(λ)=d1(λ)D2(λ)=d1(λ)d2(λ)Dr(λ)=d1(λ)d2(λ)dr(λ)
于是
{ D 1 ( λ ) ∣ D 2 ( λ ) , D 2 ( λ ) ∣ D 3 ( λ ) , ⋯   , D r − 1 ( λ ) ∣ D r ( λ ) d 1 ( λ ) = D 1 ( λ ) , d 2 ( λ ) = D 2 ( λ ) D 1 ( λ ) , ⋯   , d r ( λ ) = D r ( λ ) D r − 1 ( λ ) \begin{cases} D_1(\lambda)\mid D_2(\lambda),D_2(\lambda)\mid D_3(\lambda),\cdots ,D_{r-1}(\lambda)\mid D_r(\lambda)\\ d_1(\lambda)=D_{1}(\lambda),d_2(\lambda)=\frac{D_2(\lambda)}{D_1(\lambda)},\cdots ,d_r(\lambda)=\frac{D_r(\lambda)}{D_{r-1}(\lambda)} \end{cases} {D1(λ)D2(λ),D2(λ)D3(λ),,Dr1(λ)Dr(λ)d1(λ)=D1(λ),d2(λ)=D1(λ)D2(λ),,dr(λ)=Dr1(λ)Dr(λ)

施密特标准形是唯一的

λ \lambda λ矩阵的 A ( λ ) A(\lambda) A(λ)的施密特标准形是唯一的

证明:
因为各阶行列式因子是唯一的,所以不变因子是唯一的,所以施密特标准形是唯一的

相抵的充分必要条件

A ( λ ) , B ( λ ) ∈ P [ λ ] m × n A(\lambda),B(\lambda) \in P\left[\lambda \right]^{m\times n} A(λ),B(λ)P[λ]m×n,
则他们相抵的充要条件是他们有相同的行列式因子或不变因子

证明:
不变因子和行列式因子可以互相确定

必要性:
由前面的定理,成立
充分性:
如果他们有相同的不变因子,则他们的施密特标准形是相同的,根据相抵的传递性,成立

初等因子

A ( λ ) A(\lambda) A(λ)的秩为 r r r时, r r r个不恒等于0的 d i ( λ ) d_{i}(\lambda) di(λ)在复数域总可以分解为一次多项式因子的幂积,即
{ d 1 ( λ ) = ( λ − λ 1 ) e 11 ( λ − λ 1 ) e 12 ⋯ ( λ − λ 1 ) e 1 s d 2 ( λ ) = ( λ − λ 1 ) e 21 ( λ − λ 1 ) e 22 ⋯ ( λ − λ 1 ) e 2 s … d r ( λ ) = ( λ − λ 1 ) e r 1 ( λ − λ 1 ) e r 2 ⋯ ( λ − λ 1 ) e r s \begin{cases} d_1(\lambda)=(\lambda-\lambda_1)^{e_{11}}(\lambda-\lambda_1)^{e_{12}}\cdots (\lambda-\lambda_1)^{e_{1s}}\\ d_2(\lambda)=(\lambda-\lambda_1)^{e_{21}}(\lambda-\lambda_1)^{e_{22}}\cdots (\lambda-\lambda_1)^{e_{2s}}\\ \dots\\ d_r(\lambda)=(\lambda-\lambda_1)^{e_{r1}}(\lambda-\lambda_1)^{e_{r2}}\cdots (\lambda-\lambda_1)^{e_{rs}}\\ \end{cases} d1(λ)=(λλ1)e11(λλ1)e12(λλ1)e1sd2(λ)=(λλ1)e21(λλ1)e22(λλ1)e2sdr(λ)=(λλ1)er1(λλ1)er2(λλ1)ers
其中 λ 1 , λ 2 , … , λ s \lambda_{1},\lambda_{2},\dots,\lambda_{s} λ1,λ2,,λs d r d_{r} dr中一切相异的根
根据整除关系
0 ≤ e 1 j ≤ e 2 j ≤ ⋯ ≤ e r j ( j = 1 , 2 , … , s ) 0\le e_{1j}\le e_{2j}\le \cdots \le e_{rj}(j=1,2,\dots,s) 0e1je2jerj(j=1,2,,s)

e i j ≠ 0 e_{ij}\neq 0 eij=0
因子 ( λ − λ j ) e i j ( i = 1 , 2 , … , r , j = 1 , 2 , … , s ) (\lambda-\lambda_{j})^{eij}(i=1,2,\dots,r,j=1,2,\dots,s) (λλj)eij(i=1,2,,r,j=1,2,,s)的全体叫做 A ( λ ) A(\lambda) A(λ)初等因子

所以
不变因子 ⇒ 初等因子 \text{不变因子}\Rightarrow \text{初等因子} 不变因子初等因子
初等因子 + 秩 ⇒ 不变因子 \text{初等因子}+\text{秩}\Rightarrow\text{不变因子} 初等因子+不变因子

块对角矩阵

λ \lambda λ矩阵为块对角矩阵
A ( λ ) = ( A 1 ( λ ) A 2 ( λ ) ⋱ A m ( λ ) ) A(\lambda)= \begin{pmatrix} A_1(\lambda)&&&\\ &A_2(\lambda)&&\\ &&\ddots &\\ &&&A_m(\lambda)\\ \end{pmatrix} A(λ)=A1(λ)A2(λ)Am(λ)
A i ( λ ) ( i = 1 , 2 , … , m ) A_i(\lambda)(i=1,2,\dots,m) Ai(λ)(i=1,2,,m)的所有初等因子的集合是 A ( λ ) A(\lambda) A(λ)的全部初等因子

证明:
利用数学归纳法
当m=2时
A 1 ( λ ) ≃ d i a g ( d 1 ( λ ) , d 2 ( λ ) , … , d r 1 ( λ ) , 0 , … , 0 ) A_1(\lambda) \simeq diag(d_1(\lambda),d_2(\lambda),\dots,d_{r_{1}}(\lambda),0,\dots,0) A1(λ)diag(d1(λ),d2(λ),,dr1(λ),0,,0)
A 2 ( λ ) ≃ d i a g ( d ‾ 1 ( λ ) , d ‾ 2 ( λ ) , … , d ‾ r 2 ( λ ) , 0 , … , 0 ) A_2(\lambda) \simeq diag(\overline{d}_1(\lambda),\overline{d}_2(\lambda),\dots,\overline{d}_{r_{2}}(\lambda),0,\dots,0) A2(λ)diag(d1(λ),d2(λ),,dr2(λ),0,,0)
显然 A ( λ ) A(\lambda) A(λ)的秩为 r = r 1 + r 2 r=r_{1}+r_{2} r=r1+r2,把 d i ( λ ) d_{i}(\lambda) di(λ) d ‾ j \overline{d}_{j} dj 分别表示为不同的一次因子的幂积,即
d i ( λ ) = ( λ − λ 1 ) e i 1 ( λ − λ 2 ) e i 2 ⋯ ( λ − λ s ) e i s ( i = 1 , 2 , … , r 1 ) d_{i}(\lambda)=(\lambda-\lambda_{1})^{e_{i1}}(\lambda-\lambda_{2})^{e_{i2}}\cdots (\lambda-\lambda_{s})^{e_{is}}(i=1,2,\dots,r_1) di(λ)=(λλ1)ei1(λλ2)ei2(λλs)eis(i=1,2,,r1)
d ‾ j = ( λ − λ 1 ) h j 1 ( λ − λ 2 ) h j 2 ⋯ ( λ − λ s ) h j s ( j = 1 , 2 , … , r 2 ) \overline{d}_{j}=(\lambda-\lambda_{1})^{h_{j1}}(\lambda-\lambda_{2})^{h_{j2}}\cdots (\lambda-\lambda_{s})^{h_{js}}(j=1,2,\dots,r_2) dj=(λλ1)hj1(λλ2)hj2(λλs)hjs(j=1,2,,r2)
因此 A 1 ( λ ) A_1(\lambda) A1(λ)的初等因子形如
( λ − λ 1 ) e i 1 , ( λ − λ 2 ) e i 2 , ⋯   , ( λ − λ s ) e i s (\lambda-\lambda_{1})^{e_{i1}},(\lambda-\lambda_{2})^{e_{i2}},\cdots ,(\lambda-\lambda_{s})^{e_{is}} (λλ1)ei1,(λλ2)ei2,,(λλs)eis
中不为常数的多项式
A 2 ( λ ) A_2(\lambda) A2(λ)的初等因子形如
( λ − λ 1 ) h j 1 , ( λ − λ 2 ) h j 2 , ⋯   , ( λ − λ s ) h j s (\lambda-\lambda_{1})^{h_{j1}},(\lambda-\lambda_{2})^{h_{j2}},\cdots ,(\lambda-\lambda_{s})^{h_{js}} (λλ1)hj1,(λλ2)hj2,,(λλs)hjs
中不为常数的多项式

( λ − λ 1 ) (\lambda-\lambda_1) (λλ1)的幂指数 e 11 , e 21 , … , e r 1 1 , h 11 , h 21 , … , h r 2 1 e_{11},e_{21},\dots,e_{r_{1}1},h_{11},h_{21},\dots,h_{r_{2}1} e11,e21,,er11,h11,h21,,hr21从小到大排列,
令为 c 1 , c 2 , … , c r c_{1},c_{2},\dots,c_{r} c1,c2,,cr
0 ≤ c 1 ≤ c 2 ≤ ⋯ ≤ c r 0\le c_{1}\le c_{2}\le \dots \le c_{r} 0c1c2cr

A ( λ ) ≃ d i a g ( d 1 ( λ ) , … , d r 1 ( λ ) , d ‾ 1 ( λ ) , … , d ‾ r 2 ( λ ) , 0 , … , 0 ) A(\lambda)\simeq diag(d_1(\lambda),\dots,d_{r_{1}} (\lambda),\overline{d}_1(\lambda),\dots,\overline{d}_{r_{2}}(\lambda),0,\dots,0) A(λ)diag(d1(λ),,dr1(λ),d1(λ),,dr2(λ),0,,0)
同时
A ( λ ) ≃ d i a g ( ( λ − λ 1 ) c 1 ϕ 1 ( λ ) , ⋯   , ( λ − λ 1 ) c r ϕ r ( λ ) , 0 , ⋯   , 0 ) A(\lambda)\simeq diag((\lambda-\lambda_{1})^{c_1}\phi_1(\lambda),\cdots,(\lambda-\lambda_{1})^{c_r}\phi_r(\lambda),0,\cdots,0) A(λ)diag((λλ1)c1ϕ1(λ),,(λλ1)crϕr(λ),0,,0)
其中 ϕ i ( λ ) \phi_i(\lambda) ϕi(λ)不含 ( λ − λ 1 ) (\lambda-\lambda_{1}) (λλ1)的因式

A ( λ ) A(\lambda) A(λ)的各阶行列式因子为 D 1 ∗ ( λ ) , … , D r ∗ ( λ ) D_1^*(\lambda),\dots,D_r^* (\lambda) D1(λ),,Dr(λ),
这些行列式因子中因式 ( λ − λ 1 ) (\lambda-\lambda_1) (λλ1)的最高幂指数分别等于 c 1 , ∑ i = 1 2 c i , ⋯   , ∑ i = 1 r c i c_1,\sum_{i=1}^{2}c_i,\cdots,\sum_{i=1}^{r}c_i c1,i=12ci,,i=1rci
不变因子 d 1 ∗ ( λ ) , ⋯   , d r ∗ ( λ ) d_1^*(\lambda),\cdots,d_r^*(\lambda) d1(λ),,dr(λ)中因式 λ − λ 1 \lambda-\lambda_1 λλ1的最高幂指数分别为 c 1 , c 2 , … , c r c_{1},c_{2},\dots,c_{r} c1,c2,,cr
也就是说 A ( λ ) A(\lambda) A(λ)中与 λ − λ 1 \lambda-\lambda_1 λλ1相应的初等因子是由下列因子
( λ − λ 1 ) c 1 , ( λ − λ 1 ) c 2 , ⋯   , ( λ − λ 1 ) c r (\lambda-\lambda_1)^{c_1},(\lambda-\lambda_1)^{c_2},\cdots ,(\lambda-\lambda_1)^{c_r} (λλ1)c1,(λλ1)c2,,(λλ1)cr
c j ≠ 0 c_j\neq 0 cj=0的那些幂 ( λ − λ 1 ) c j (\lambda-\lambda_1)^{c_j} (λλ1)cj组成的,因为就是 A 1 ( λ ) , A 2 ( λ ) A_1(\lambda),A_2(\lambda) A1(λ),A2(λ)中与 λ − λ 1 \lambda-\lambda_1 λλ1相应的全部初等因子。
λ − λ 2 , ⋯   , λ − λ s \lambda-\lambda_2,\cdots,\lambda-\lambda_s λλ2,,λλs也有同样的结论
所以 A 1 ( λ ) , A 2 ( λ ) A_1(\lambda),A_2(\lambda) A1(λ),A2(λ)的全部初等因子都是 A ( λ ) A(\lambda) A(λ)的初等因子

下面证明 A ( λ ) A(\lambda) A(λ)没有其他的初等因子
( λ − a ) k (\lambda-a)^k (λa)k A ( λ ) A(\lambda) A(λ)的一个初等因子,于是 ( λ − a ) k (\lambda-a)^k (λa)k一定是包含在某一个初等因子 d i ∗ ( λ ) d_i^*(\lambda) di(λ) λ − a \lambda-a λa的最高次幂
所以 ( λ − a ) k ∣ d r ∗ ( λ ) ⇒ ( λ − a ) k ∣ D r ∗ ( λ ) ⇒ D r ∗ ( a ) = 0 (\lambda-a)^k \mid d_r^*(\lambda) \Rightarrow (\lambda-a)^k \mid D_r^*(\lambda)\Rightarrow D_r^*(a)=0 (λa)kdr(λ)(λa)kDr(λ)Dr(a)=0
D r ∗ ( λ ) ≡ d 1 ( λ ) ⋯ d r 1 ( λ ) d ‾ 1 ( λ ) ⋯ d ‾ r 2 ( λ ) D_r^*(\lambda)\equiv d_1(\lambda)\cdots d_{r_1}(\lambda)\overline{d}_1(\lambda)\cdots \overline{d}_{r_2}(\lambda) Dr(λ)d1(λ)dr1(λ)d1(λ)dr2(λ)
d i ( λ ) ∣ d r 1 ( λ ) ( i = 1 , 2 , ⋯   , r 1 ) d_i(\lambda) \mid d_{r_1}(\lambda)(i=1,2,\cdots,r_1) di(λ)dr1(λ)(i=1,2,,r1)
d ‾ j ( λ ) ∣ d ‾ r 2 ( λ ) ( j = 1 , 2 , ⋯   , r 2 ) \overline{d}_j(\lambda) \mid \overline{d}_{r_2}(\lambda)(j=1,2,\cdots,r_2) dj(λ)dr2(λ)(j=1,2,,r2)
所以
d r 1 ( a ) d ‾ r 2 ( a ) = 0 d_{r_1}(a)\overline{d}_{r_2}(a)=0 dr1(a)dr2(a)=0
所以 a a a必然是 λ 1 , ⋯   , λ s \lambda_1,\cdots,\lambda_s λ1,,λs中的一个
所以 ( λ − a ) k (\lambda-a)^{k} (λa)k是与某个 ( λ − λ i ) (\lambda-\lambda_i) (λλi)相应的初等因子
( λ − a ) k (\lambda-a)^k (λa)k一定是某一个 ( λ − a ) e i t (\lambda-a)^{e_{it}} (λa)eit ( λ − a ) h j t (\lambda-a)^{h_{jt}} (λa)hjt
其中 i = 1 , ⋯   , r 1 , j = 1 , ⋯   , r 2 , t = 1 , 2 , ⋯   , s i=1,\cdots,r_1,j=1,\cdots,r_2,t=1,2,\cdots,s i=1,,r1,j=1,,r2,t=1,2,,s
这就证明了除 A 1 ( λ ) A_1(\lambda) A1(λ) A 2 ( λ ) A_2(\lambda) A2(λ)的全部初等因子外, A ( λ ) A(\lambda) A(λ)没有别的初等因子

后面的由数学归纳法,成立

例子

若尔当块

n n n阶若尔当块
J i = ( λ i 1 λ i 1 ⋱ ⋱ λ i 1 λ i ) n × n J_i= \begin{pmatrix} \lambda_i&1&&&\\ &\lambda_i&1&&\\ &&\ddots&\ddots&\\ &&&\lambda_i&1\\ &&&&\lambda_i\\ \end{pmatrix}_{n\times n} Ji=λi1λi1λi1λin×n

λ I − J i \lambda I-J_i λIJi
行列式因子 D 1 ( λ ) = D 2 ( λ ) = ⋯ = D n − 1 = 1 D_1(\lambda)=D_2(\lambda)=\cdots=D_{n-1}=1 D1(λ)=D2(λ)==Dn1=1
D n = ( λ − λ i ) n D_n=(\lambda-\lambda_i)^n Dn=(λλi)n
不变因子
d 1 ( λ ) = d 2 ( λ ) = ⋯ = d n − 1 ( λ ) = 1 d_1(\lambda)=d_2(\lambda)=\cdots=d_{n-1}(\lambda)=1 d1(λ)=d2(λ)==dn1(λ)=1
d n ( λ ) = ( λ − λ i ) n d_n(\lambda)=(\lambda-\lambda_i)^n dn(λ)=(λλi)n

初等因子只有一个 ( λ − λ i ) n (\lambda-\lambda_i)^n (λλi)n

若尔当标准形

J = ( J 1 J 2 ⋱ J t ) n × n J= \begin{pmatrix} J_1&&&\\ &J_2&&\\ &&\ddots&\\ &&&J_t\\ \end{pmatrix}_{n\times n} J=J1J2Jtn×n
其中 J i J_i Ji为若尔当块
λ I − J \lambda I-J λIJ的初等因子为
( λ − λ 1 ) m 1 , ⋯   , ( λ − λ t ) m t (\lambda-\lambda_1)^{m_1},\cdots, (\lambda-\lambda_t)^{m_t} (λλ1)m1,,(λλt)mt
其中 ∑ i = 1 t m i = n \sum_{i=1}^{t}m_i=n i=1tmi=n

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值