k近邻法
k近邻法(k-nearest neighbor,k-NN)。输入为实例的特征向量,对应于特征空间中的点;输出为实例的类别,可以取多类。
3.1 k近邻算法
算法简述:给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入实例分为这个类。
k近邻法没有显示的学习过程。
3.2 k近邻模型
三个基本要素:
距离度量;k值的选择;分类决策规则
模型
k近邻法中,当训练集、距离度量(如欧氏距离)、k值及分类决策规则(如多数表决)确定后,对于任何一个新的输入实例,它所属的类唯一地确定。(这相当于根据上述要素将特征空间划分为一些子空间,确定子空间里的每个点所属的分类。)
在特征空间中,对每个训练实例点x_i,距离该点比其他点更近的所有点组成一个区域,叫做cell。每个训练实例点拥有一个cell,所有训练实例点的cell构成对特征空间的一个划分。最近邻法将实例x_i的类y_i作为其单元中所有点的类标记(class label),这样,每个cell的实例点的类别是确定的,
距离度量
由不同的距离度量所确定的最近邻点是不同的。
k值
k值的选择会对k近邻法的结果差生重大影响。
k值小意味着整体模型变得复杂,容易发生过拟合。
(如果选择较小的k值,相当于用较小的邻域中的训练实例进行预测,优点是模型“学习”的近似误差会减小,只有与输入实例较近的(相似的)训练实例才会对预测结果起作用。但是缺点是“学习”的估计误差会增大,预测结果会对近邻的实例点非常敏感,而若近邻的实例点恰巧是噪声的话,预测就会出错。)
k值大意味着整体模型变得简单,容易忽略训练实例中的有用信息。
(如果选择较大的k值,相当于用较大的邻域中的训练实例进行预测。优点是可以减少学习的估计误差。缺点是增大近似误差。这时与输入实例较远的(不相似的)训练实例也会对预测起作用,容易导致预测错误。)
极端情况,如果k=N,那么无论输入实例是什么,都将简单地预测它属于在训练实例中最多的类。这时,模型过于简单,完全忽略训练实例中的大量有用信息,是不可取的。
在应用中,k值一般取一个比较小的数值。通常采用交叉验证法来选取最优的k值。
分类决策规则
往往是多数表决,即,由输入实例的k个临近的训练实例中的多数类决定输入实例的类。
3.3 k近邻法的实现–kd树
首先,实现k近邻时,主要考虑的问题是如何对训练数据进行快速k近邻搜索。k近邻法最简单的实现方法是线性扫描,即,计算输入实例与每一个训练实例的距离,但是当训练集非常大时,显然计算非常耗时,是不可取的。为了提高k近邻搜索的效率,考虑使用特殊的结构存储训练数据,以减少计算距离的次数。由此引出kd树(kd-tree)。
构造kd树
kd树是二叉树。表示对k维空间的一个划分(partition)。
具体构造算法就不写了
构造过程简述:
构造根结点,使根结点对应于k维空间中包含所有实例点的超矩形区域;
通过以下递归方法,不断对k维空间进行划分,生成子节点;
(这个划分方式就是)在超矩形区域上选择一个坐标轴和在此坐标轴上的一个切分点,确定一个超平面,这个超平面通过选定的切分点并垂直于选定的坐标轴,将当前超矩形区域切分为左右(或上下)两个子区域;这时,实例被分到两个子区域。
上述过程直到子区域内没有实例时终止。
通常,依次选择坐标轴对空间切分,选择训练实例点在选定坐标轴上的中位数(median)为切分点,这样的到的kd树是平衡的。
注意,平衡的kd树搜索时的效率未必是最优的。
搜索kd树
利用kd树可以省去对大部分数据点的搜索,从而减少搜索的计算量。
kd搜索的基本思想:给定一个目标点,搜索其最近邻。首先找到包含目标点的叶结点;然后从该叶结点出发,依次回退到父结点;不断查找与目标点最邻近的结点,当确定不可能存在更近的结点时终止。
kd树搜索的平均计算复杂度是O(logN),这里N是训练实例数。kd树适用于训练实例数远大于空间维数时的k近邻搜索。当空间维数接近于训练实例数时,它的效率会迅速下降,几乎接近线性扫描。
《统计学习方法》李航