基于Transformer的翻译模型

一、导入包

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import math

二、词嵌入

首先我们把输入的单词转为词向量,它包括token embedding和position embedding两层,编码之后的词向量再分别的流向encoder里面的两层网络。

1. Embedding

class Embeddings(nn.Module):
    def __init__(self, d_model, vocab):
        super(Embeddings, self).__init__()
        # Embedding层
        self.lut = nn.Embedding(vocab, d_model)
        # Embedding维数
        self.d_model = d_model

    def forward(self, x):
        # 返回x的词向量(需要乘以math.sqrt(d_model))
        return self.lut(x) * math.sqrt(self.d_model)

2. 位置编码

Transformer采用了这一方式,通过奇数列cos函数,偶数列sin函数方式,利用三角函数对位置进行固定编码。

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)
        # 位置编码矩阵,维度[max_len, embedding_dim]
        pe = torch.zeros(max_len, d_model, device=DEVICE)
        # 单词位置
        position = torch.arange(0.0, max_len, device=DEVICE)
        position.unsqueeze_(1)
        # 使用exp和log实现幂运算
        div_term = torch.exp(torch.arange(0.0, d_model, 2, device=DEVICE) * (- math.log(1e4) / d_model))
        div_term.unsqueeze_(0)
        # 计算单词位置沿词向量维度的纹理值
        pe[:, 0 : : 2] = torch.sin(torch.mm(position, div_term))
        pe[:, 1 : : 2] = torch.cos(torch.mm(position, div_term))
        # 增加批次维度,[1, max_len, embedding_dim]
        pe.unsqueeze_(0)
        # 将位置编码矩阵注册为buffer(不参加训练)
        self.register_buffer('pe', pe)

    def forward(self, x):
        # 将一个批次中语句所有词向量与位置编码相加
        # 注意,位置编码不参与训练,因此设置requires_grad=False
        x += Variable(self.pe[:, : x.size(1), :], requires_grad=False)
        return self.dropout(x)

三、Encoder 结构

1. Self-Attention

## 7. ScaledDotProductAttention
class ScaledDotProductAttention(nn.Module):
    def __init__(self):
        super(ScaledDotProductAttention, self).__init__()

    def forward(self, Q, K, V, attn_mask):
        ## 输入进来的维度分别是 [batch_size x n_heads x len_q x d_k]  K: [batch_size x n_heads x len_k x d_k]  V: [batch_size x n_heads x len_k x d_v]
        ##首先经过matmul函数得到的scores形状是 : [batch_size x n_heads x len_q x len_k]
        scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k)

        ## 然后关键词地方来了,下面这个就是用到了我们之前重点讲的attn_mask,把被mask的地方置为无限小,softmax之后基本就是0,对q的单词不起作用
        scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is one.
        attn = nn.Softmax(dim=-1)(scores)
        context = torch.matmul(attn, V)
        return context, attn

2. Multi-Head Attention

MultiHeadedAttention采用多头self-attention。它先将隐向量切分为h个头,然后每个头内部进行self-attention计算,最后再concat再一起。这样做是为了获取语义的多层信息,最后再拼接到一起,得到的输出就包含了输入的多层信息。


def clones(module, N):
    """
    克隆基本单元,克隆的单元之间参数不共享
    """
    return nn.ModuleList([
        copy.deepcopy(module) for _ in range(N)
    ])


class MultiHeadedAttention(nn.Module):
    """
    Multi-Head Attention
    """
    def __init__(self, h, d_model, dropout=0.1):
        super(MultiHeadedAttention, self).__init__()
        """
        `h`:注意力头的数量
        `d_model`:词向量维数
        """
        # 确保整除
        assert d_model % h == 0
        # q、k、v向量维数
        self.d_k = d_model // h
        # 头的数量
        self.h = h
        # WQ、WK、WV矩阵及多头注意力拼接变换矩阵WO
        self.linears = clones(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, query, key, value, mask=None):
        if mask is not None:
            mask = mask.unsqueeze(1)
        # 批次大小
        nbatches = query.size(0)
        # WQ、WK、WV分别对词向量线性变换,并将结果拆成h块
        query, key, value = [
            l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
            for l, x in zip(self.linears, (query, key, value))
        ]
        # 注意力加权
        x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout)
        # 多头注意力加权拼接
        x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k)
        # 对多头注意力加权拼接结果线性变换
        return self.linears[-1](x)

3. Add & Norm

Add是一种残差连接,通常用于解决多层网络训练的问题,可以让网络只关注当前差异的部分,在 ResNet 中经常用到。

NormLayer Normalization,通常用于 RNN 结构,Layer Normalization 会将每一层神经元的输入都转成均值方差都一样的,这样可以加快收敛。

class SublayerConnection(nn.Module):
    """
    通过层归一化和残差连接,连接Multi-Head Attention和Feed Forward
    """
    def __init__(self, size, dropout):
        super(SublayerConnection, self).__init__()
        self.norm = LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        # 层归一化
        x_ = self.norm(x)
        x_ = sublayer(x_)
        x_ = self.dropout(x_)
        # 残差连接
        return x + x_

4. Feed Forward

Feed Forward 层比较简单,是一个两层的全连接层,第一层的激活函数为 Relu,第二层不使用激活函数。

class PositionwiseFeedForward(nn.Module):
    def __init__(self, d_model, d_ff, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        x = self.w_1(x)
        x = F.relu(x)
        x = self.dropout(x)
        x = self.w_2(x)
        return x

5. Encoder Layer

通过上面描述的 Multi-Head Attention, Feed Forward, Add & Norm 就可以构造出一个 Encoder block,Encoder block 接收输入矩阵 X(n×d),并输出一个矩阵 O(n×d)。通过多个 Encoder block 叠加就可以组成 Encoder。
第一个 Encoder block 的输入为句子单词的表示向量矩阵,后续 Encoder block 的输入是前一个 Encoder block 的输出,最后一个 Encoder block 输出的矩阵就是 编码信息矩阵 C,这一矩阵后续会用到 Decoder 中。

class EncoderLayer(nn.Module):
    def __init__(self, size, self_attn, feed_forward, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        # SublayerConnection作用连接multi和ffn
        self.sublayer = clones(SublayerConnection(size, dropout), 2)
        # d_model
        self.size = size

    def forward(self, x, mask):
        # 将embedding层进行Multi head Attention
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
        # attn的结果直接作为下一层输入
        return self.sublayer[1](x, self.feed_forward)

6. Encoder

class Encoder(nn.Module):
    def __init__(self, layer, N):
        """
        layer = EncoderLayer
        """
        super(Encoder, self).__init__()
        # 复制N个编码器基本单元
        self.layers = clones(layer, N)
        # 层归一化
        self.norm = LayerNorm(layer.size)

    def forward(self, x, mask):
        """
        循环编码器基本单元N次
        """
        for layer in self.layers:
            x = layer(x, mask)
        return self.norm(x)

四、Decoder 结构

Decoder block 结构与Encoder block相似,但是存在一些区别:

包含两个 Multi-Head Attention 层。第一个Masked Multi-Head Attention 层采用了 Masked 操作。第二个 Multi-Head Attention 层的 K, V 矩阵使用 Encoder 的编码信息矩阵 C 进行计算,而 Q 使用上一个 Decoder block 的输出计算。最后有一个 Softmax 层计算下一个翻译单词的概率。

1. 第一个Multi-head Attention层

def subsequent_mask(size):
    "Mask out subsequent positions."
    # 设定subsequent_mask矩阵的shape
    attn_shape = (1, size, size)
    # 生成一个右上角(不含主对角线)为全1,左下角(含主对角线)为全0的subsequent_mask矩阵
    subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
    # 返回一个右上角(不含主对角线)为全False,左下角(含主对角线)为全True的subsequent_mask矩阵
    return torch.from_numpy(subsequent_mask) == 0

2. 第二个Multi-Head Self-Attention

Decoder block 第二个 Multi-Head Attention 变化不大, 主要的区别在于其中 Self-Attention 的 K, V矩阵不是使用 上一个 Decoder block 的输出计算的,而是使用 Encoder 的编码信息矩阵 C 计算的。

根据 Encoder 的输出 C计算得到 K, V,根据上一个 Decoder block 的输出 Z 计算 Q (如果是第一个 Decoder block 则使用输入矩阵 X 进行计算),后续的计算方法与之前描述的一致。

这样做的好处是在 Decoder 的时候,每一位单词都可以利用到 Encoder 所有单词的信息 。

3. Decoder Layer

class DecoderLayer(nn.Module):
    def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
        super(DecoderLayer, self).__init__()
        self.size = size
        # 自注意力机制
        self.self_attn = self_attn
        # 上下文注意力机制
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 3)

    def forward(self, x, memory, src_mask, tgt_mask):
        # memory为编码器输出隐表示
        m = memory
        # 自注意力机制,q、k、v均来自解码器隐表示
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
        # 上下文注意力机制:q为来自解码器隐表示,而k、v为编码器隐表示
        x = self.sublayer[1](x, lambda x: self.self_attn(x, m, m, src_mask))
        return self.sublayer[2](x, self.feed_forward)

4. Decoder

class Decoder(nn.Module):
    def __init__(self, layer, N):
        super(Decoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size)

    def forward(self, x, memory, src_mask, tgt_mask):
        """
        循环解码器基本单元N次
        """
        for layer in self.layers:
            x = layer(x, memory, src_mask, tgt_mask)
        return self.norm(x)

五、Linear 与 Softmax

class Generator(nn.Module):
    """
    解码器输出经线性变换和softmax函数映射为下一时刻预测单词的概率分布
    """
    def __init__(self, d_model, vocab):
        super(Generator, self).__init__()
        # decode后的结果,先进入一个全连接层变为词典大小的向量
        self.proj = nn.Linear(d_model, vocab)

    def forward(self, x):
        # 然后再进行log_softmax操作(在softmax结果上再做多一次log运算)
        return F.log_softmax(self.proj(x), dim=-1)

六、Transformer

class Transformer(nn.Module):
    def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
        super(Transformer, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        self.generator = generator

    def encode(self, src, src_mask):
        return self.encoder(self.src_embed(src), src_mask)

    def decode(self, memory, src_mask, tgt, tgt_mask):
        return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)

    def forward(self, src, tgt, src_mask, tgt_mask):
        # encoder的结果作为decoder的memory参数传入,进行decode
        return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask)


def make_model(src_vocab, tgt_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.1):
    c = copy.deepcopy
    # 实例化Attention对象
    attn = MultiHeadedAttention(h, d_model).to(DEVICE)
    # 实例化FeedForward对象
    ff = PositionwiseFeedForward(d_model, d_ff, dropout).to(DEVICE)
    # 实例化PositionalEncoding对象
    position = PositionalEncoding(d_model, dropout).to(DEVICE)
    # 实例化Transformer模型对象
    model = Transformer(
        Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout).to(DEVICE), N).to(DEVICE),
        Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout).to(DEVICE), N).to(DEVICE),
        nn.Sequential(Embeddings(d_model, src_vocab).to(DEVICE), c(position)),
        nn.Sequential(Embeddings(d_model, tgt_vocab).to(DEVICE), c(position)),
        Generator(d_model, tgt_vocab)).to(DEVICE)

    # This was important from their code.
    # Initialize parameters with Glorot / fan_avg.
    for p in model.parameters():
        if p.dim() > 1:
            # 这里初始化采用的是nn.init.xavier_uniform
            nn.init.xavier_uniform_(p)
    return model.to(DEVICE)

八、总结

Transformer 与 RNN 不同,可以比较好地并行训练。Transformer 中 Multi-Head Attention 中有多个 Self-Attention,可以捕获单词之间多种维度上的相关系数 attention score。
由于 self-attention 没有循环结构,Transformer 需要一种方式来表示序列中元素的相对或绝对位置关系。Position Embedding (PE) 就是该文提出的方案。但在一些研究中,模型加上 PE 和不加上 PE 并不见得有明显的差异。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值