论文《Is Homophily A Necessary for Graph Neural Networks?》笔记
发表在2022 ICLR会议上,引用量221,作者是该领域大佬的学生。
ICLR会议简介:
全称International Conference on Learning Representations(国际学习表征会议),深度学习顶会。
查询会议:
- 会伴:https://www.myhuiban.com/
- CCF deadline:https://ccfddl.github.io/
本文的研究内容:同质性(Homophily)对于GNNs是否是必要的。
先验知识:
1、homophily & homophily assumption(同质性&同质性假设)
Homophily(同质性)是一个社会网络和社会心理学中的概念,指的是相似个体之间更有可能建立联系或关系的趋势。这种现象在各种社交环境中普遍存在,包括友谊、婚姻、职业网络等。在网络科学中,同质性也用来描述网络中节点之间因为共享某些特征或属性而倾向于彼此连接的倾向。
Homophily Assumption(同质性假设)是社交网络分析中的一个核心假设,它假设网络中的个体倾向于与自己相似的其他个体建立联系。这种假设基于观察到的社交现象,即人们倾向于与拥有相似特征(如年龄、性别、种族、兴趣、社会经济地位等)的人交往。同质性假设在社交网络分析、信息传播模型、网络形式理论等多个领域都有重要应用。
在图论和网络科学中,同质性假设对理解和预测网络结构和动态具有重要意义。例如: