异质图论文阅读

1 《Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs》

H2GCN

1.1 Contributions

(1)三个理论证明,最重要的证明了GCN处理异质图的缺陷;
(2)提出了不同hop和不同iterations的特征拼接有助于提高模型准确性;

1.2 Benchmark

synthematic dataset、Texas、Wisconsin、Actor、Squirrel、Chameleon、Cornell、CoraFull、Citeseer、Pumbed、Cora;

1.3 Baseline

GCN、GAT、GCN-Cheby、GraphSAGE、MixHop et al……

2 《Graph Neural Networks with Heterophily》

在这里插入图片描述

2.1 Contributions

感觉就是对GCN的卷积方式进行了改进,但是改进的方法不是学习节点特征表示,而是对节点类别进行更新……
不知道这种想法有没有问题

在这里插入图片描述

2.2 Formulation

详见567

2.3 Benchmark、Baseline

和上篇文章相同。

3 《SLGCN: Structure Learning Graph Convolutional Networks for Graphs under Heterophily》

SLGCN

3.1 Contributions

(1)使用谱聚类,利用节点特征构建新的关联矩阵,进而将更远的节点信息考虑进来;
(2)在谱聚类的基础上,通过改进降低计算量;
在这里插入图片描述

3.2 Baselines

MLP、GCN、GAT、MixHop、Geom-GCN、H2GCN……

3.3 Benchmark

Cora、Citeseer、Pumbed、Squirrel、Chameleon、Cornell、Texas、Wisconsin……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值