目录
1 《Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs》
1.1 Contributions
(1)三个理论证明,最重要的证明了GCN处理异质图的缺陷;
(2)提出了不同hop和不同iterations的特征拼接有助于提高模型准确性;
1.2 Benchmark
synthematic dataset、Texas、Wisconsin、Actor、Squirrel、Chameleon、Cornell、CoraFull、Citeseer、Pumbed、Cora;
1.3 Baseline
GCN、GAT、GCN-Cheby、GraphSAGE、MixHop et al……
2 《Graph Neural Networks with Heterophily》
2.1 Contributions
感觉就是对GCN的卷积方式进行了改进,但是改进的方法不是学习节点特征表示,而是对节点类别进行更新……
不知道这种想法有没有问题
2.2 Formulation
2.3 Benchmark、Baseline
和上篇文章相同。
3 《SLGCN: Structure Learning Graph Convolutional Networks for Graphs under Heterophily》
3.1 Contributions
(1)使用谱聚类,利用节点特征构建新的关联矩阵,进而将更远的节点信息考虑进来;
(2)在谱聚类的基础上,通过改进降低计算量;
3.2 Baselines
MLP、GCN、GAT、MixHop、Geom-GCN、H2GCN……
3.3 Benchmark
Cora、Citeseer、Pumbed、Squirrel、Chameleon、Cornell、Texas、Wisconsin……