论文《From Latent Graph to Latent Topology Inference:Differentiable Cell Complex Module》笔记

【DCM】本文提出了一种新型的深度学习模块——可微分细胞复合模块(Differentiable Cell Complex Module,DCM),它用于推断潜在的拓扑结构(Latent Topology Inference,LTI)。这个模块旨在改进图神经网络(GNNs)的性能,特别是在处理没有固定图结构或给定图结构不理想的情况下。

发表在2024年ICLR会议上,作者学校:罗马大学、哈佛大学、牛津大学,引用量:9。

ICLR会议简介:全称International Conference on Learning Representations(国际学习表征会议),深度学习顶会。

查询会议:

原文和开源代码链接:

0、核心内容

潜在图推理(Latent Graph Inference,LGI) 通过动态学习图拓扑,放宽了图神经网络(GNNs)对给定拓扑的依赖。

然而,大多数LGI方法都假设有一个(有噪声的、不完整的、可改进的、……的)输入图来重新连接,并且可以单独学习常规的图拓扑。

随着拓扑深度学习(Topological Deep Learning,TDL)的成功,我们研究了潜在拓扑推理(Latent Topology Inference,LTI),用于学习描述数据点之间多路交叉的高阶单元复合体(具有稀疏拓扑和非规则拓扑)。

为此,我们引入了可微细胞复合模块(DCM),这是一种新的可学习函数,可以计算复杂模块中的细胞概率,以改进下游任务。我们展示了如何将DCM与单元复杂的消息传递网络集成,并以端到端方式进行训练,这要归功于两步推理过程,避免了对输入中所有可能得单元进行穷尽搜索,从而保持可伸缩性。

我们的模型在几个同配性和异配性图数据集上进行了测试,结果显示它由于其他最先进的技术,提供了显著的改进,特别是在没有提供输入图的情况下。

(引自摘要)

1、先验知识
① 什么是潜在图推理(Latent Graph Inference,LGI)?

潜在图推理是一种图神经网络的方法,它允许模型在没有预先定义的图拓扑结构的情况下进行学习。**这里的“图拓扑”指的是图中节点(顶点)和边的排列方式,即图中节点和边是如何相互连接的。**在传统的GNNs中,通常假设输入数据已经以图的形式给出,并且图的结构是固定不变的。然而,LGI的核心思想是数据可能存在一个未知的(潜在的)图结构,这个结构对于学习任务可能是更优的。

LGI的关键点包括:

  1. 动态学习:LGI方法不是使用一个静态的、预先定义的图结构,而是在模型训练过程中动态地学习或推理出图的结构。这意味着模型可以根据数据的特征自动调整节点之间的连接关系。
  2. 放宽依赖:传统的GNNs高度依赖于输入图的结构,因为它们通过图结构来聚合邻居节点的信息。LGI通过学习数据的潜在图结构,减少了对固定图拓扑的依赖,从而可能提高模型对不同数据分布的适应性。
  3. 潜在结构:LGI假设数据中存在一种不是立即可见的潜在图结构,这种结构可能更好地捕捉了数据点之间的关系。例如,在社交网络分析中,潜在的朋友关系可能不会立即从数据中显现出来,但LGI可以帮助发现这些关系。
  4. 应用范围:LGI可以应用于多种场景,比如当只有数据点云而没有明确的图结构时,或者当给定的图结构对于特定的下游任务不是最优时。

LGI提供了一种更加灵活的方式来处理图数据,允许模型自适应地学习数据的内在结构,而不是受限于人为定义或预先设定的图结构。这种方式在处理复杂关系和动态网络时尤其有用。

② 什么是拓扑深度学习(Topological Deep Learning,TDL)?

拓扑深度学习是一种结合了代数拓扑和深度学习的领域。它利用代数拓扑的概念来分析和处理数据,特别是那些具有高阶或多向交互的数据。TDL的核心思想是捕捉数据的内在结构和模式,这些结构和模式可能无法通过传统的基于图的方法完全表达。

以下是TDL的一些关键特点:

  1. 高阶交互:TDL关注数据点之间的高阶关系,这些关系超出了传统图神经网络所能处理的成对节点关系。例如,它可能考虑三个或更多节点之间的交互。
  2. 代数拓扑工具:TDL使用代数拓扑中的工具,如单纯复形(simplicial complexes)、细胞复合体(cellular complexes)和组合复合体(combinatorial complexes)来表示和处理数据。
  3. 多向关系:TDL能够编码数据中的多向关系,这意味着它能够同时考虑多个实体之间的关系,而不仅仅是成对的节点。
  4. 拓扑信号处理:TDL的一个分支是拓扑信号处理(Topological Signal Processing,TSP),它研究如何将拓扑概念应用于信号处理任务。
  5. 拓扑神经网络:TDL还包括拓扑神经网络(Topological Neural Networks,TNNs),这些网络利用拓扑结构来设计网络架构,以更好地捕捉和学习数据的高阶特征。
  6. 泛化和灵活性:TDL方法通常具有很好的泛化能力,因为它们能够从数据中学习到复杂的拓扑特征,并且可以适应不同的数据结构。
  7. 应用领域:TDL可以应用于多种领域,包括但不限于社交网络分析、生物信息学、图像处理和机器视觉等。
  8. 计算挑战:由于TDL处理的是高阶结构,它可能面临更高的计算复杂性,特别是在处理大规模数据集时。

拓扑深度学习是一个新兴的研究领域,它通过将深度学习的强大能力与拓扑学的严谨性结合起来,为理解和建模复杂数据结构提供了新的视角和工具。

The importance of Topological Deep Learning lies in its ability to model higher-order interactions, crucial for capturing the multifaceted nature of real-world systems. (拓扑深度学习的重要性在于其模拟高阶交互的能力,这对于捕捉现实世界系统的多面性至关重要。)

③ 什么是细胞复合体(cell complexes)?

细胞复合体是一种数学上的结构,用于在拓扑学中描述空间。 它们是单纯复形(simplicial complexes)的推广,可以更灵活地表示复杂的几何和拓扑结构。细胞复合体的概念在拓扑深度学习(Topological Deep Learning,TDL)中尤为重要,因为它们可以用来捕捉数据点之间的高阶交互。

细胞复合体的基本特征:

  1. 多维单元:细胞复合体由不同维度的单元(称为细胞)组成,这些单元可以是点(0-细胞)、线段(1-细胞)、多边形(2-细胞)或更高维度的类似结构。
  2. 组合结构:细胞复合体的细胞通过它们的边界关系组合在一起。每个高维细胞可以分解为多个低维细胞的并集。
  3. 边界关系:细胞复合体中的细胞之间存在边界关系,即一个低维细胞可以使另一个高维细胞的边界或一部分。
  4. 拓扑空间:细胞复合体提供了一种方式来构建拓扑空间,这些空间可以具有复杂的孔洞和连接性。
  5. 规则性:在某些情况下,细胞复合体可以是规则的,这意味着复合体中的所有细胞都是规则多边形或多胞形,例如在代数拓扑中常用的立方体或四面体。
  6. 同调和同伦:细胞复合体可以用来研究空间的同调和同伦理论,这些是拓扑学中用于分类空间的代数工具。
  7. 应用:在拓扑深度学习中,细胞复合体可以用来构建能够捕捉高阶关系的神经网络模型,例如通过细胞复合体卷积网路(Cell Complex Convolutional Neural Networks,CCCNs)。
  8. 数据表示:细胞复合体提供了一种方式来表示数据点之间的复杂交互,这些交互可能在传统的基于图的模型中难以捕捉。

细胞复合体是拓扑学中的一个强大工具,它们在数学、物理学和工程学中有广泛的应用,并且在深度学习领域,特别是在处理具有复杂结构的数据时,显示出了巨大的潜力。

在这里插入图片描述

④ 什么是常规细胞复合体(regular cell complexes)?

**常规细胞复合体(regular cell complexes)是一种特殊的细胞复合体,它具有一些规则性的特点,使得每个细胞都可以被赋予一个明确的维度和方向。**这种规则性通常与单纯形复合体(Simplicial Complex)相比较,后者由单纯形(如三角形或四面体)构成,并且每个单纯形都是由顶点通过线性组合构成的。

常规细胞复合体的一些关键特性:

  1. 规则性:每个细胞都是规则形状,例如在二维空间中的正方形或三角形,在三维空间中的立方体或四面体。
  2. 同胚性:每个细胞都同胚于一个欧几里得空间的子集,这意味着它们可以通过连续变换相互转换而不撕裂或粘合。
  3. 有限交集:当两个细胞相交时,它们的交集也是一个细胞,且这个交点细胞的维度小于等于两个相交细胞的维度。
  4. 局部有限性:在常规细胞复合体中,每个点的邻域只与有限数量的其他细胞相交。
  5. 边界关系:每个细胞的边界由一组低维细胞组成,这些低维细胞按照特定的顺序排列,形成一个明确的边界结构。
  6. 定向性:在某些情况下,常规细胞复合体的细胞可以被赋予一个方向或定向,这有助于定义边界关系和更高级的拓扑结构。
  7. 组合结构:常规细胞复合体可以通过组合低维细胞来构建更高维的细胞,这些细胞的组合遵循特定的规则。
  8. 代数描述:常规细胞复合体可以通过代数工具,如边界矩阵和Hodge拉普拉斯矩阵,来描述和分析。

在拓扑深度学习中,常规细胞复合体提供了一种结构化的方式来表示和处理数据,使得可以利用拓扑学的概念来设计和训练神经网络。例如,通过使用常规细胞复合体,可以构建能够捕捉数据点之间多向交互的神经网络模型。

2、展开研究

在本文中,我们通过将LGI推广到高阶复合体,引入了**潜在拓扑推理(Latent Topology Inference,LTI)**的概念。LTI的目标不仅仅是学习描述成对交互的图结构,而且是学习描述数据点之间多路交互的高阶复杂结构。

作为LTI的第一个实例,我们引入了可微细胞复合模块(Differentiable Cell Complex Module,DCM),这是一种新的深度学习架构,可以动态学习细胞复合体以改进下游任务。

DCM实现了一个两步推理过程,以减轻计算负担:首先,通过可微图模块(Differentiable Graph Module,GGM)的新改进版本学习复杂的1-skeleton;然后学习哪些高阶细胞(多边形)应该包含在复合体中。这两个步骤都利用了消息传递(在节点和边级别)和基于α-entmax函数类的稀疏采样技术,这允许克服原始DGM的限制,只能学习常规的图拓扑。我们推广了DGM的训练程序,以端到端的方式训练DCM。

DCM在几个同配性和异配性数据集上进行了测试,显示它由于其他最先进的技术,无论是否提供输入图,都提供了显著的改进。特别是,在提供的输入图的异配图基准上的精度提高表明,即使输入图不能很好地匹配数据,DCM也能导致鲁棒性能。

3、实验结果

同配图上的节点分类任务:

在这里插入图片描述

异配图上的节点分类任务:

在这里插入图片描述

其中:

  • w/o graph:表示输入图被假设是不可用的
  • w graph:表示输入图被假设是可用的

注:红色表示最好结果,蓝色表示次好结果。

4、基本原理
① TNNs

TNNs是基于细胞复合体的消息传递网络,其中节点可以与节点和边交换消息,边可以与节点、边和多边形交换消息,环可以与环和边交换消息。

在这里插入图片描述

In a cell complex, we can leverage a way more sophisticated adjacency structure among cells than the usual node adjacecy in graphs. (在细胞复合体中,我们可以利用一种比图中通常的节点邻接更复杂的细胞间邻接结构。)

注:普通的GNNs的基本元素是节点、边、节点特征;TNNs的基本元素是节点、细胞复合体(多个节点复合成的细胞)、边。

② 模型架构

在这里插入图片描述

图1:通过**常规细胞复合体(regular cell complexes)**进行潜在拓扑推断(LTI)的两步程序。

可微细胞复合模块(DCM)是一个函数,首先通过α-DGM(Differentiable Graph Module)学习一个图描述数据点之间的成对交互,然后利用图的常规细胞复合体的1-skeleton的2-cells(polygons),通过多边形推理模型(Polygon Inference Module,PIM)描述数据点之间的多路交互。然后将推断的拓扑用于两个消息传递网络,在节点级别(GNN)和边级别(Cell Complex Neural Network,CCNN)来解决下游任务。整个架构以端到端的方式进行训练。

我们现在介绍可微分细胞复合模块(DCM),这是第一个能够执行潜在拓扑推断的架构。集成DCM的提议层将节点特征(每个节点的特征称为一个数据点)和(可选的)输入图作为输入,并将更新的节点特征和推断的潜在细胞复合体作为输出。

DCM首先通过可微图模块(DGM)的新改进版本学习描述数据点之间的两两相互作用的潜在图,称为α-DGM,能够推断出不规则和稀疏的图。

一旦推断出潜在图,它就被用作规则细胞复合体的底层图,该复合体的多边形集,即循环的子集,通过多边形推理模块(Polygon Inference Module,PIM)学习,再次改进下游任务。
然后将推断的拓扑用于细胞复合消息传递网络,在节点和边级别上操作以解决下游任务。整个体系结构以端到端的方式进行训练。

由于基于α-entmax函数族的可微采样方案,DCM能够推断稀疏拓扑。设计了一个复杂的辅助和实际细胞特征系统,在相似的基础上驱动采样。

我们采用前面提到的两步(首先是边,然后是多边形)推理过程来保持计算复杂度的可处理性。在所有可能的多边形中直接采样,从而平凡地推广DGM框架,将导致难以处理的复杂性,例如,即使在三角形级别,采样在节点数量上也会具有三次复杂性,因为所有的边都是待采样的候选者。

The DCM is able to infer a sparse topology thanks to differential sampling schemes. Auxiliary and actual cell features drive the sampling on a similarity basis. (由于采用可微采样方案,DCM能够推断稀疏拓扑。辅助和实际细胞特征在相似性基础上驱动采样。)

在这里插入图片描述

(好高端的方法,有点意思……)

5、参考资料
  • 21
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值