Barra风险因子模型如何衡量风险简易详细版解释

本文详细介绍了Barra因子模型,包括其起源、因子收益率的计算、协方差矩阵的构建以及注意事项,如回归中的截距项、约束条件和数据滞后问题。重点讨论了如何通过因子分解降低投资组合风险并解释了在中国市场中为何需要考虑国家因子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  由于之前只系统学过fama french因子模型,对barra因子了解甚少。最近在网上看了很多关于barra因子的介绍,感觉很多讲解有一些复杂,就根据自己的理解来总结了一份非常详细又易于理解,从barra诞生的意义开始的文章。

1. 从马克维茨到barra因子

  在马科维茨理论中,我们用投资组合的波动率来衡量投资组合的风险,计算投资组合波动率又需要资产间相关矩阵。马科维茨要解决的优化问题如下,换句话说我们是要最小化投资风险:
m i n ω T C ω s . t . ∑ i ω i = 1 μ T ω > ρ ω 1 , ω 2 , . . . ω n > 0 min\pmb{\omega}^{\mathbf T}\mathbf C\pmb{\omega}\\s.t.\\\sum_{i}\omega_i=1\\\mathbf \mu^{\mathbf T}\pmb{\omega}>\rho\\\omega_1,\omega_2,...\omega_n>0 minωTCωs.t.iωi=1μTω>ρω1,ω2,...ωn>0

  也就是说,如果我们想要衡量一个投资组合的风险,我们需要投资组合的相关性矩阵。这个矩阵可能很大,因此我们希望降低维度,减少我们的计算量。我们可以将每一个资产的收益都分解到不同因子上,因子个数会远远小于投资组合里的资产个数。

  所以我们引入了Barra因子模型,我们的目的是通过因子间的相关性矩阵,最终得到股票间(投资组合)的相关性矩阵。因此下面,我们先来看看如何获得因子间的相关性矩阵

2. Barra因子收益率

  为了得到Barra因子的相关性矩阵,我们要先得到Barra中每个因子的收益率。这就像我们知道了每一只股票的收益率后,才能计算得到每两个股票的相关系数。

  现在假设某一日,投资组合中有 N N N支股票,我们把 N N N支股票的收益分别分解到 K K K个因子上。 f f f代表因子收益率,这个因子收益率对当日所有投资组合中的 N N N个股票都是相同的,例如 f k f_k fk代表k因子上的日收益率。

  既然是共同的,我们就可以通过回归得到f的值。注意,我们这里是在某一日这个时间点对投资组合上的所有股票做回归,因此做的是横截面回归而不是时间序列回归。 f k f_k fk代表k因子上的日收益率, x n , k x_{n,k} xn,k代表股票n在因子k上的暴露。暴露度的计算方法就要参考barra手册了。

  为方便理解,此处不区分行业因子/风格因子/国家因子,我们可以将该日的N支个股收益 r n r_n rn K K K个因子进行回归(回归没有加截距项的原因会在后面具体说)。

r n = ∑ i = 1 K x n , k × f k + ε n r_n= \sum_{i=1}^Kx_{n,k}\times f_k+\varepsilon_n rn=i=1Kxn,k×fk+εn
  回归后我们可以计算出 f 1 f_1 f1 f K f_K fK的值,也就是 K K K个因子当日的收益率。照这样的方法我们可以回归出从 t = 1 t=1 t=1,到 t = T t=T t=T所有时间上的k个因子收益率。也就是 f t , k f_{t,k} ft,k代表 t t t时间上 k k k因子的收益率。

3. Barra协方差矩阵

  到目前为止,我们已经有 K K K个因子的时间序列数据了。下一步就是简单地计算出他们之间的协方差。获得一个协方差矩阵 F F F。下面我们可以计算得到我们一开始想要的股票收益率矩阵。其中 V V V是股票协方差矩阵,F是因子协方差矩阵, Δ \Delta Δ是股票特质收益率矩阵,在这里先不具体介绍:
V = X F X T + Δ V = XFX^T+\Delta V=XFXT+Δ

4. 其他值得注意的事情

4.1回归截距项与国家因子

  在中国版的barra因子手册中加入了国家因子,其实相当于在回归方程中加入了一个截距项。但是在一些套利行为普遍的国家市场中,不需要添加截距项,只需要将等式左侧的因变量——股票收益率 r n r_n rn直接减去无风险收益率,变成 r n − r f r_n-r_f rnrf即可。这是因为套利定价理论(Arbitrage Pricing Theory)认为,在套利频繁的市场中,无风险利率就会是截距项。由于中国不符合理论前提,因此截距项也不一定是无风险利率,所以要加上国家因子(也就是一个截距项)。

4.2 求因子收益率的约束

  在barra模型中,由于回归模型的解不唯一,因此加入了一些限制条件。比如在use4中加入的限制条件是市值加权的行业因子收益和为0。

4.3 因子数据滞后

  在回归模型中,我们使用的是下一期股票收益率r和当期因子暴露 x x x,所以回归得到的因子收益率 f f f也是当期的。对于为什么不能使用barra对下一期股票收益进行预测和投资,我的理解是,barra因子已经被市场上投资者了解,因此成为了beta因子,alpha超额依然要靠少数人挖到的alpha因子赚取。

  如果有什么不对的地方,也请大家斧正!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值