【统计机器学习】逻辑回归

1. 逻辑斯蒂分布

首先介绍逻辑斯蒂分布(logistic distribution)。

设X是连续随机变量,X服从逻辑斯蒂分布是指X具有下列分布函数和密度函数:
F ( x ) = P ( X ⩽ x ) = 1 1 + e − ( x − μ ) / γ F(x)=P(X\leqslant x)=\frac{1}{1+e^{-(x-\mu)/\gamma}} F(x)=P(Xx)=1+e(xμ)/γ1
f ( x ) = F ‘ ( x ) = e − ( x − μ ) / γ γ ( 1 + e − ( x − μ ) / γ ) 2 f(x)=F`(x)=\frac{e^{-(x-\mu)/\gamma}}{\gamma(1+e^{-(x-\mu)/\gamma})^2} f(x)=F(x)=γ(1+e(xμ)/γ)2e(xμ)/γ
其中, μ \mu μ为位置函数, γ \gamma γ为形状参数

图形如下所示。分布函数属于逻辑斯蒂函数。以点( μ , 1 2 \mu,\frac{1}{2} μ,21)为中心对称。
在这里插入图片描述

2.二项逻辑斯蒂回归模型

二项逻辑斯蒂回归模型是一类分类模型。由条件概率分布P(Y|X)表示。这里,随机变量X取值为实数,Y取值为0或1。通过监督学习的方式来估计模型参数

逻辑斯蒂回归模型

二项逻辑斯蒂回归模型是如下的概率分布:

P ( Y = 1 ∣ x ) = e x p ( w ⋅ x + b ) 1 + e x p ( w ⋅ x + b ) P(Y=1|x)=\frac{exp(w\cdot x+b)}{1+exp(w\cdot x+b)} P(Y=1x)=1+exp(wx+b)exp(wx+b)
P ( Y = 0 ∣ x ) = 1 1 + e x p ( w ⋅ x + b ) P(Y=0|x)=\frac{1}{1+exp(w\cdot x+b)} P(Y=0x)=1+exp(wx+b)1

这里 x ϵ R n x\epsilon R^n xϵRn是输入, Y ϵ [ 0 , 1 ] Y\epsilon[{0,1]} Yϵ[0,1]是输出。 ω ϵ R n \omega \epsilon R^n ωϵRn b ϵ R b\epsilon R bϵR是参数。 ω \omega ω是权重,b是偏置

逻辑斯蒂回归模型是比较 P ( Y = 1 ∣ x ) P(Y=1|x) P(Y=1x) P ( Y = 0 ∣ x ) P(Y=0|x) P(Y=0x)的大小,将实例x分到概率值较大的那一个

所以我们需要做的是给定训练集{x,y},去学习到其中的 ω \omega ω和b参数

有时为了方便,将权值向量 ω \omega ω和输入向量x进行扩充,把偏置量b表示成统一的形式。
ω = ( ω ( 1 ) , ω ( 2 ) , . . . , ω ( n ) , b ) T \omega=(\omega^{(1)},\omega^{(2)},...,\omega^{(n)},b)^T ω=(ω(1),ω(2),...,ω(n),b)T, x = ( x ( 1 ) , x ( 2 ) , . . . x ( n ) , 1 ) T x=(x^{(1)},x^{(2)},...x^{(n)},1)^T x=(x(1),x(2),...x(n),1)T,这时逻辑斯蒂回归模型如下:

P ( Y = 1 ∣ x ) = e x p ( w ⋅ x ) 1 + e x p ( w ⋅ x ) P(Y=1|x)=\frac{exp(w\cdot x)}{1+exp(w\cdot x)} P(Y=1x)=1+exp(wx)exp(wx)
P ( Y = 0 ∣ x ) = 1 1 + e x p ( w ⋅ x ) P(Y=0|x)=\frac{1}{1+exp(w\cdot x)} P(Y=0x)=1+exp(wx)1

对数几率函数

现在说明逻辑斯蒂回归模型的特点:一个事件的几率(odds)是指该事件发生的概率p与该事件不发生的概率(1-p)的比值。表示成

l o g i t ( p ) = l o g p 1 − p logit(p) = log\frac{p}{1-p} logit(p)=log1pp

代入逻辑斯蒂回归得到:

log ⁡ P ( Y = 1 ∣ x ) 1 − P ( Y = 1 ∣ x ) = ω ⋅ x \log\frac{P(Y=1|x)}{1-P(Y=1|x)}=\omega\cdot x log1P(Y=1x)P(Y=1x)=ωx

这说明在逻辑斯蒂回归模型,输出Y的对数几率是输入x的线性模型(或者x的线性函数表示的函数)。其中线性函数的值越接近正无穷,概率越接近1。线性函数的值越接近负无穷,概率越接近0。

模型参数估计

逻辑斯蒂回归模型在学习的时候,给定训练集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } , x ϵ R N , y ϵ { 0 , 1 } T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\},x\epsilon R^N,y\epsilon\{0,1\} T={(x1,y1),(x2,y2),...,(xN,yN)},xϵRN,yϵ{0,1}。可以应用极大似然估计法来估计模型参数 ω \omega ω,得到逻辑斯蒂回归模型。


P ( Y = 1 ∣ x ) = π ( x ) , P ( Y = 0 ∣ x ) = 1 − π ( x ) P(Y=1|x)=\pi(x) , P(Y=0|x)=1-\pi(x) P(Y=1x)=π(x),P(Y=0x)=1π(x)

似然函数为
∏ i = 1 N [ π ( x i ) ] y i [ 1 − π ( x i ) ] 1 − y i \prod_{i=1}^N[\pi(x_i)]^{y_i}[1-\pi(x_i)]^{1-y_i} i=1N[π(xi)]yi[1π(xi)]1yi

对数似然函数为
L ( w ) = ∑ i = 1 N y i log ⁡ ( π ( x i ) ) + ( 1 − y i ) log ⁡ ( 1 − π ( x i ) )     = ∑ i = 1 N y i log ⁡ ( π ( x i ) ) − y i log ⁡ ( 1 − π ( x i ) ) + log ⁡ ( 1 − π ( x i ) )     = ∑ i = 1 N y i log ⁡ π ( x i ) 1 − π ( x i ) + log ⁡ ( 1 − π ( x i ) )     = ∑ i = 1 N y i ( ω ⋅ x i ) − log ⁡ ( 1 + e x p ( ω ⋅ x ) ) L(w)=\sum_{i=1}^Ny_i\log(\pi(x_i))+(1-y_i)\log(1-\pi(x_i))\\ \qquad \,\,\,=\sum_{i=1}^Ny_i\log(\pi(x_i))-y_i\log(1-\pi(x_i))+\log(1-\pi(x_i)) \\ \qquad \,\,\,=\sum_{i=1}^Ny_i\log\frac{\pi(x_i)}{1-\pi(x_i)}+\log(1-\pi(x_i)) \\ \qquad \,\,\,=\sum_{i=1}^Ny_i(\omega\cdot x_i)-\log(1+exp(\omega \cdot x)) L(w)=i=1Nyilog(π(xi))+(1yi)log(1π(xi))=i=1Nyilog(π(xi))yilog(1π(xi))+log(1π(xi))=i=1Nyilog1π(xi)π(xi)+log(1π(xi))=i=1Nyi(ωxi)log(1+exp(ωx))

L ( w ) L(w) L(w)进行求极大值,就得到了 ω \omega ω的估计值

这样问题就转变为了对以对数似然函数为目标函数的最优化问题。逻辑斯蒂回归通常采用梯度下降法和拟牛顿法。

补充
这里对上面的 log ⁡ ( 1 − π ( x i ) ) \log(1-\pi(x_i)) log(1π(xi))进行补充说明


log ⁡ P ( Y = 1 ∣ x ) 1 − P ( Y = 1 ∣ x ) = ω ⋅ x \log\frac{P(Y=1|x)}{1-P(Y=1|x)}=\omega\cdot x log1P(Y=1x)P(Y=1x)=ωx
可知
log ⁡ π ( x i ) 1 − π ( x i ) = ω ⋅ x ⇒ π ( x i ) 1 − π ( x i ) = e x p ( ω ⋅ x ) ⇒ 1 1 − π ( x i ) = e x p ( ω ⋅ x ) + 1 ⇒ 1 − π ( x i ) = 1 e x p ( ω ⋅ x ) + 1 ⇒ log ⁡ ( 1 − π ( x i ) ) = − log ⁡ ( 1 + e x p ( ω ⋅ x ) ) \log\frac{\pi(x_i)}{1-\pi(x_i)}= \omega\cdot x \Rightarrow \\\frac{\pi(x_i)}{1-\pi(x_i)}=exp({\omega\cdot x}) \Rightarrow \frac{1}{1-\pi(x_i)}=exp({\omega\cdot x})+1\Rightarrow \qquad1-\pi(x_i)=\frac{1}{exp({\omega\cdot x})+1} \Rightarrow \log(1-\pi(x_i))=-\log(1+exp(\omega \cdot x)) log1π(xi)π(xi)=ωx1π(xi)π(xi)=exp(ωx)1π(xi)1=exp(ωx)+11π(xi)=exp(ωx)+11log(1π(xi))=log(1+exp(ωx))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值