推荐系统笔记7-Product-based Neural Networks for User Response Prediction

本文介绍Product-based Neural Networks for User Response Prediction(简称PNN),原文Paper链接

具体的代码实现见Github

摘要

本文和上次介绍的FNN一样,针对用户响应问题(如CTR、CVR等)建模,因为这类问题往往是类别型并且存在多个field,所以传统模型只能挖掘较浅的数据模式,且DNN不能直接用来处理高维稀疏输入(因特征空间过大),文章提出通过PNN来学习类别特征的Embedding表示,Product层用来捕获层间类别的交互模式,用更深的全连接层来进一步提取高阶交互特征。

一、介绍

通常再信息检索领域,包括推荐系统,其数据格式通常是多个field的,比如 [Weekday=Tuesday, Gender=Male, City=London] ,通过One-hot编码转换为稀疏数据,一般可通过LR、FM、GBDT来处理并能得到较不错的结果,但是这些模型依赖特征工程;文章指出FNN的弊端:1、FM限制了Embedding的质量;2、“add”操作不足以提取出多个field的交互特征;所以进而提出了通过product来处理交互;
提出PNN模型:1、直接从Embedding开始,而不需要预训练;2、使用product 层基于Embedding来建模交互特征(包括内积和外积);3、进一步通过FC来提取高阶特征模式;

二、DEEP LEARNING FOR CTR ESTIMATION

2.1、Product-based Neural Network**

多个field的特征,如用户信息(City,hour),广告信息(ID,活动ID),除了FNN中提出的不同field做One-hot编码以外,还存在field中的局部依赖性和层级结构,所以作者提出PNN(FM是经过两个特征向量的内积来实现交互的)。接下来作者详细介绍所提出的两种网络Inner Product-based Neural Network (IPNN)和Outer Product-based Neural Network(OPNN) ;
PNN的网络结构如下图所示:
在这里插入图片描述
采取从上到下的描述:PNN的输出是一个概率值, y ^ = σ ( W 3 l 2 + b 3 ) \hat{y}=\sigma(W_3l_2+b_3) y^=σ(W3l2+b3) l 2 = r e l u ( W 2 l 1 + b 2 ) l_2=relu(W_2l_1+b_2) l2=relu(W2l1+b2) l 1 = r e l u ( l z + l p + b 1 ) l1=relu(l_z+l_p+b_1) l1=relu(lz+lp+b1),其中激活函数用的relu,而不是FNN中的tanh,且对于 l 1 l_1 l1层来说, l z l_z lz是线性信号, l p l_p lp是二阶信号
定义内积操作如下:
A ⊙ B = ∑ i , j A i , j B i , j {\rm{A}} \odot {\rm{B}} = \sum\limits_{i,j} { {A_{i,j}}{B_{i,j}}} AB=i,jAi,jBi,j首先是对于A和B的每个元素对应相乘,然后将结果求和;那么 l z 和 l p l_z和l_p lzl<

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值