训练集和测试集 (Training and Test Sets):拆分数据

将数据集分为两个子集:

  • 训练集 - 用于训练模型的子集。
  • 测试集 - 用于测试训练后模型的子集。

如果只有一个数据集的话,可以将数据集分开:


图 1. 将单个数据集拆分为一个训练集和一个测试集。

但要确保测试集满足以下两个条件:

  • 规模足够大,可产生具有统计意义的结果。
  • 能代表整个数据集。换言之,挑选的测试集的特征应该与训练集的特征相同。

假设测试集满足上述两个条件,目标是创建一个能够很好地泛化到新数据的模型。我们的测试集充当新数据的代理。以下图为例。请注意,从训练数据中学习的模型非常简单。该模型的表现并不完美,出现了一些错误的预测。不过,该模型在测试数据上的表现与在训练数据上的表现一致。也就是说,这个简单的模型没有过拟合训练数据。


请勿对测试数据进行训练。 如果评估指标取得了意外的好结果,则可能表明不小心对测试集进行了训练。例如,高准确率可能表明测试数据泄露到了训练集。

例如,假设一个模型要预测某封电子邮件是否是垃圾邮件,它使用主题行、邮件正文和发件人的电子邮件地址作为特征。我们按照 80-20 的拆分比例将数据拆分为训练集和测试集。在训练之后,该模型在训练集和测试集上均达到了 99% 的精确率。我们原本预计测试集上的精确率会低于此结果,因此再次查看数据后发现,测试集中的很多样本与训练集中的样本是重复的(由于疏忽,我们在拆分数据之前,没有将输入数据库中的相同垃圾邮件重复条目清理掉)。我们无意中对一些测试数据进行了训练,因此无法再准确衡量该模型泛化到新数据的效果。

Key Terms
overfitting(过拟合)test set(测试集)
training set(训练集)

阅读更多
版权声明: https://blog.csdn.net/bxg1065283526/article/details/79967928
文章标签: 训练集 测试集
个人分类: 机器学习
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭