半监督回归(Semi-Supervised Regression, SSR)-论文整理

本文内容来自 Semi-Supervised Regression: A recent review

SSR 的种类按照以下标准进行分类:

  • 输入变量之间的关系
    • 参数估计(Parametric methods)
    • 非参数估计法(Non-Parametric methods)
  • 视图数量
    • 多视图学习(Multiple view learning)
    • 单视图学习(Single view learning)
  • learner数量
    • Multiple learners
    • Single learner

同时也存在以下分法:
在这里插入图片描述

*Non-Parametric SSR Methods

1. Semi-Supervised Co-Regression

协同训练是 Blum 和 Mitchell 在 1998 年提出的一种半监督方法, 是多视图学习的开拓者.
协同训练基于三个假设:

  1. 数据集的每个示例都可以分为两个不完全相关的不同视图, 这意味着可以使用两种不同类型的信息来描述每个实例(冗余视图假设).
  2. 每个视图都可以有效地用于分类(兼容性假设).
  3. 这些视图在给定类标签的情况下是条件独立的(独立性假设). 在这种情况下, 使用标记示例在每个视图中分别训练两个分类器, 并且使用每个算法对未标记数据的最自信的预测结果来增强另一个的训练集.

Co-style SSR 算法主要分为两大类: Multi-view Co-Regression; Single-view Co-Regression

1.1 Multi-view Co-Regression

1.2 Single-view Co-Regression

2. Semi-Supervised Kernel Regression (SSKR)

核回归是回归分析中最常用的非参数方法之一. 核是一个正定对称函数, 它满足 Mercer 定理的条件, 对应于特征空间中的内积(Reproducing Kernel Hilbert Space - RKHS). 构造描述数据内部几何结构的核函数是核方法效率的关键.
内核回归中使用了几种类型的内核函数:

  1. Gaussian RBF kernel
  2. Polynomial kernel
  3. Sigmoid kernel
  4. Linear kernel
  5. Reproducing kernel

SSKR 主要分为: SS Kernel Ridge Regression, SS Support Vector Regression, SS Output Kernel Regression

2.1 Semi-Supervised Kernel Ridge Regression

  • SSKR(Semi-Supervised Kernel Regression)假设未标记示例的预测是已知的, 则使用适当选择的权重因子构造高斯核回归器. 当权重因子等于0时, SSKR 是经典的核回归, 当权重因子等于1时, SSKR 是基于图形的方法.
  • On transductive regression. 基于 KRR 的两阶段回归算法. 根据该方法, 每个未标记点的位置最初用于通过局部线性回归或岭回归或作为相邻标签的加权平均来估计其标签. 更具体地说, 未标记点的局部估计仅基于其标记的邻域. 否则, 将从训练集中忽略. 然后, 采用全局优化方法, 保证基于核岭回归的预测精度, 减少错误预测. 实验中使用的核是高斯核.
  • Semi-supervised learning by search of optimal target vector. 使用少量标记数据进行传导推断和降维. 该方法优于经典的 KRR 和传感线性判别(TLD).
  • SSLCE(Semi-Supervised LocalConstant Estimator). Seok (2012)

2.2 Semi-Supervised Support Vector Regression

2.3 Semi-Supervised Output Kernel Regression

3. SSR via Graph Regularization

许多研究结合了基于图的学​​习方法, 尤其是对于 SSL 问题. 图正则化说明数据的内在几何结构, 构建最近邻图, 将此图作为正则化项添加到目标函数中可以提高算法的预测性能.

3.1 SSR Graph Laplacian Regularization

  • TLapRLSR(Temporal Laplacian Regularized Least Squares Regression). 图拉普拉斯矩阵被时序图拉普拉斯矩阵取代, 该图拉普拉斯矩阵由部分标记的数据序列构成.
  • SSLS(Semi-Supervised Laplacian Score). 它结合了有监督和无监督的拉普拉斯 score(LS, SLS)方法来解决回归问题. LS 根据未标记实例之间的相似性度量对特征进行排序, 也就是说, 通过确定每个点的最近邻, 从彼此之间的欧几里德距离测量. 此外, SLS 根据输出的相似性度量对特征进行排序. 因此, SSLS 是 SSL 上下文中 SLS 的扩展, 其主要优点是能够保留数据的本地结构.
  • LLGDI(Learning from Local and Global Discriminative Information). 将 LapRLS 与半监督判别分析方法(SDA)相结合, 创建了一种半监督降维方法. 为了保证更高的分类效率, 引入了一组估计标签, 同时使用投影矩阵来捕捉每个类的全局判别方向. LLGDI 采用一组局部和全局分类函数分别保存局部几何和判别信息, 旨在同时解决回归和降维问题.
  • LS-SDA/LS-SDA/F
  • The convergence rate of semi-supervised regression with quadratic loss. 在 LapRLS 框架内使用了一个与二次损失相结合的正则化回归器, 以研究收敛速度和未标记集的基数的相关性.

3.2 SSR Hessian Regularization

3.3 SSR Parallel Field Regularization

3.4 Spectral Regression

  • Semi-Supervised Regression using Spectral Techniques. 引入了谱回归 (SR) 的概念, 这是一种通过将多变量普通回归与谱分析联系起来的 SSR 图正则化方法. SR 利用标记和未标记的实例, 旨在为多类问题构建高性能算法. 形成反映标签信息以及数据内在几何结构的邻接图, 随后应用最小二乘分类器.
  • SDA(Semi-supervised Discriminant Analysis). 提出线性判别分析(LDA)监督方法的扩展, 该方法结合了未标记数据提供的信息.
  • Multi-Manifold Semi-Supervised Learning. 适当选择覆盖整个数据集 U d \mathbf{U}_d Ud 的子集, 并与标记的实例一起形成一个图. 尺寸受限的谱聚类将图切割成少量的聚类, 最后应用监督学习. 而每个聚类必须包含足够的标记数据.

4. Local Linear SS Regression

局部线性 SSR 是一种非参数回归方法, 试图解决回归问题中经常出现的局部常数估计问题. 在回归问题中经常导致邻域实例的相同输出, 因此并入了局部线性估计器.

Rwebangira 和 Lafferty (2009) 发表了一项说明局部线性 SSR 效率的著名研究,提出了在名为局部线性半监督回归 LLSR(Local Linear Semi-supervised Regression) 的 SSL 设置下实现局部线性回归. LLSR 采用流形正则化, 使用局部线性拉普拉斯函数在每个未标记实例中拟合局部线性模型. 它在"平滑"函数上的拟合性能优于其他已知监督算法的相应行为.

5. Semi-Supervised Gaussian Process Regression

高斯过程是随机变量的集合, 其中任何有限数量的变量都具有一致的联合高斯分布. 高斯过程(GP)被认为是一种非常有效的回归工具.

Zhang and Yeung (2009) 将 SSR 和多任务回归相结合, 从而创建了半监督多任务回归 SSMTR(Semi-Supervised Multi-Task Regression) 算法, 它是 SSL 设置中监督多任务回归 (SMTR) 的扩展. 更准确地说, 所有包含的学习任务都是在假设所有核参数之间存在共同先验的情况下, 以 GP 为基回归器来处理的. 最后, 使用未标记的数据, 并适当调整核函数​​.

*Parametric SSR Methods-Hybrid Methods

尽管对 SSR 的非参数方法进行了多次研究, 但由于自变量之间的关系很难建模以估计输出变量, 因此参数方法很少被应用. 迄今为止涵盖的参数化方法分为两大类:

  • Semi-Supervised Linear Regression
    • SSRM(Semi-Supervised Regression Model)结合半监督聚类和多元回归, 使用SSRM(Semi-Supervised Regression Model)算法分析包含数字和分类属性的数据集. 假设所有的数值属性都是有标签的数据, 所有的分类属性都是无标签的数据, 则使用 k-mode 聚类算法将数据集划分为多个聚类. 随后, 对每个聚类应用多元线性或二次回归模型. 其目的是最小化回归模型的最小二乘误差加权和以及分类属性之间的差异性度量. SSRM算法的效率取决于数据的性质.
  • Semi-Supervised Hybrid Methods
    • GFs based on SSR. 基于邻域图的高斯场(GFs)应用于 SSR.
    • Lafferty 和 Wasserman (2008) 从极大极小理论的角度提出了回归半监督技术的综合统计分析. 对流形假设以及半监督平滑假设进行了深入研究, 表明如果第一个成立, 则第二个是不必要的. 此外, 在没有流形假设的情况下, 平滑假设太弱. 因此, 提出了假设的改进版本, 以优化使用标记和未标记的数据, 并导致更有效的估计.
    • Guillaumin等(2010) 使用多核学习 (MKL) 框架进行图像分类, 其灵感来自 co-training. 训练集由带有特定标签和标签的标记图像集和不带标签的未标记图像集组成, 从而描述具有不同特征的数据. 开始, 使用图像内容和相关标签来学习 MKL 分类器, 随后, 它用于估计未标记图像集上的标签. 最后, 带有先前预测输出的标记和未标记图像都用于训练视觉 SVM 分类器来预测未标记图像的标签. 如果利用未标记数据对 MKL score 执行最小二乘回归, 则预测性能可能会提高. 因此, 在第一阶段使用 SSR 实现了级联结构化方法, 并将获得的预测提供给下一阶段以解决分类问题.
    • LSR(Local Spline Regression). 利用 Sobolev 空间中发展的样条传感算法, 由多项式和 SSC 的格林函数组成.
    • Local semi-supervised regression for single-image super-resolution. 基于局部 SSR 算法的图像超分辨率 SSL 方法.
    • Real-Time Articulated Hand Pose Estimation Using Semi-supervised Transductive Regression Forests. 用于手姿势估计的 semi-supervised transductive regression forest算法.

*Semi-Supervised Ordinal Regression

有序回归或排序学习是指在顺序约束下的多类分类问题. 在实际应用中, 当有限变量和离散变量的值之间存在顺序且未定义秩之间的度量距离时, 顺序回归处理有限变量和离散变量的分类.

  • TOR(Transductive Ordinal Regression). 在利用非线性核函数对每一类的决策函数进行学习的同时, 对未标记数据的序类标签进行估计. 通过 MAE 和 MZE 度量测量分类误差.
  • SSGPOR(Semi-supervised Gaussian Process Ordinal Regression). 高斯过程经常用于解决监督学习任务的顺序回归问题. 通过使用期望传播(EP)算法将监督高斯过程顺序回归方法扩展到半监督. 该算法基于标记和未标记数据对应的输出分布的相似性, 同时创建穿过低密度区域的决策边界. 这种相似性实际上可以通过最小化未标记数据输出上的预测分布与类似于标记数据分布的近似多项式分布之间的Kullback-Leibler散度来实现.
  • SMOP
  • 4
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
很抱歉,根据提供的引用内容,我无法提供关于"SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS"代码的信息。引用的内容主要介绍了图上结点分类的半监督问题以及相关的研究方法和改进。如果您需要获取该代码,建议您查阅相关的学术论文或者在开源代码平台上搜索相关的项目。 #### 引用[.reference_title] - *1* [Semi-supervised classification with graph convolutional networks](https://blog.csdn.net/weixin_41362649/article/details/113232898)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Kipf-GCN《Semi-Supervised Classification With Graph Convolutional Networks》论文详解](https://blog.csdn.net/u012762410/article/details/127177181)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Semi-Supervised Classification with Graph Convolutional Networks](https://blog.csdn.net/m0_37924639/article/details/124884547)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值