POJ 2828 && 2886 线段树?二分?

暂且叫它空位模型= =|||,我觉得这个模型往线段树上想的话有点儿牵强...往二分上想更简单点儿,因为这个模型的更新查询操作分不太清楚...

POJ 2828 :倒序操作...

POJ 2886 :简单的模型..涉及到了反素数的知识...(借鉴了wff学长的代码,copy了一份反素数表),百度百科里有段求反素数的程序..DFS实现的...

代码:

POJ2828:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 200005
#define lson rt<<1
#define rson rt<<1|1
int Blk[N<<2];
int Val[N],Pos[N],Ans[N];
void Build(int l,int r,int rt)
{
    Blk[rt]=r-l+1;
    if(l==r)
        return ;
    int mid=(l+r)>>1;
    Build(l,mid,lson);
    Build(mid+1,r,rson);
}
void Find(int n,int l,int r,int rt)
{
    Blk[rt]--;
    if(l==r)
    {
        Ans[l]=Val[n];
        return ;
    }
    int mid=(l+r)>>1;
    if(Blk[lson]>=Pos[n])
        Find(n,l,mid,lson);
    else
    {
        Pos[n]-=Blk[lson];
        Find(n,mid+1,r,rson);
    }
}
int main()
{
    int n,i;
    while(scanf("%d",&n)!=EOF)
    {
        Build(1,n,1);
        for(i=0;i<n;++i)
            scanf("%d %d",&Pos[i],&Val[i]);
        for(i=0;i<n;++i)
            Pos[i]++;
        for(i=n-1;i>=0;--i)
            Find(i,1,n,1);
        for(i=1;i<=n;++i)
        {
            printf("%d%c",Ans[i],i==n?'\n':' ');
        }
    }
    return 0;
}


 

POJ2886:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 500005
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
int a[37]={1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,5040,7560,10080,15120,20160,25200,27720,45360,50400,  
           55440,83160,110880,166320,221760,277200,332640,498960,500001};  
int b[37]={1,2,3,4,6,8,9,10,12,16,18,20,24,30,32,36,40,48,60,64,72,80,84,90,96,100,108,120,128,144,160,168,180,192,200,1314521};  
int Blk[N<<2],Remain,A[N];
char Name[N][15];
void Build(int l,int r,int rt)
{
    Blk[rt]=r-l+1;
    if(l==r)
        return ;
    int mid=(l+r)>>1;
    Build(lson);
    Build(rson);
}
int Find(int n,int l,int r,int rt)
{
    Blk[rt]--;
    if(l==r)
    {
        return l;
    }
    int mid=(l+r)>>1;
    if(Blk[rt<<1]>=n)
        return Find(n,lson);
    else
    {
        n-=Blk[rt<<1];
        return Find(n,rson);
    }
}
int main()
{
    int n,k,i,pos,move,anti,num,ans;
    while(scanf("%d %d",&n,&k)!=EOF)
    {
        for(i=1;i<=n;++i)
        {
            scanf("%s",Name[i]);
            scanf("%d",&A[i]);
        }
        i=0;
        while(a[i]<=n)
            i++;
        anti=a[i-1],num=b[i-1];
        Build(1,n,1);
        pos=k,Remain=n;
        for(i=1;i<=anti;++i)
        {
            ans=Find(pos,1,n,1);
            move=A[ans];
            Remain--;
            if(Remain==0)
                break;
            if(move<0)
            {
                pos=((pos+move-1)%Remain+Remain)%Remain+1;

            }
            else
            {
                pos=(pos-1+move-1)%Remain+1;
            }
        }
        printf("%s %d\n",Name[ans],num);
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值