到世界各地去扔纸团儿:【Paper Toss: World Tour HD】

转载自找果儿网。

 

       谁都扔过纸团,但如果一款iphone游戏将纸团扔的赏心悦目,妙笔生花,身临其境,无疑就是现在介绍的这款了。

       游戏提供了世界各地很多的名胜古迹,每种都配备独特的音乐,场景,天气,你需要根据垃圾桶的距离,风速等因素,将纸团扔入纸篓,随着不断扔入,你可以开启新的场景,到更加神秘独特的国家去扔纸团。每一次纸团清脆的入篓声都给游戏者带来更大的满足感。

       别看只是个小游戏,但并不简单,有可能风雨交加,森林大海,暴雪岩浆,而新开启的场景距离也是越来越远,扔到后来远方的纸篓完全成了一个小点,此时不光考验技术,更考验感觉了。

       每天朝九晚五的生活可能使得越来越多的朋友放弃时间长,耗费精力的大游戏。这款随开随停,还可群乐乐的扔纸团游戏无疑可满足更多朋友的需要。

 

 

展开阅读全文

Ball Toss

09-20

DescriptionnnClassmates stand in a circle facing inward, each with the direction left or right in mind. One of the students has a ball and begins by tossing it to another student. (It doesn't really matter which one.)When one catches the ball and is thinking left, she throws it back across the circle one place to the left (from her perspective) of the person who threw her the ball. Then she switches from thinking left to thinking right. Similarly, if she is thinking right, she throws the ball to the right of the person who threw it to her and then switches from thinking right to thinking left. nnThere are two exceptions to this rule: If one catches the ball from the classmate to her immediate left and is also thinking left, she passes the ball to the classmate to her immediate right, and then switches to thinking right. Similarly, if she gets the ball from the classmate to her immediate right and is thinking right, she passes the ball to the classmate to her immediate left, and then switches to thinking left.(Note that these rules are given to avoid the problem of tossing the ball to oneself.) nnNo matter what the initial pattern of left and right thinking is and who first gets tossed the ball,everyone will get tossed the ball eventually! In this problem, you will figure out how long it takes. nnYou'll be given the initial directions of n classmates (numbered clockwise), and the classmate to whom classmate 1 initially tosses the ball. (Classmate 1 will always have the ball initially.) nInputnnThere will be multiple problem instances. Each problem instance will be of the form nnn k t1 t2 t3 . . . tn nnwhere n (2 <= n <= 30) is the number of classmates, numbered 1 through n clockwise around the circle,k (> 1) is the classmate to whom classmate 1 initially tosses the ball, and ti (i = 1, 2, . . . , n) are eacheither L or R, indicating the initial direction thought by classmate i. (n = 0 indicates end of input.) nOutputnnFor each problem instance, you should generate one line of output of the form: nnClassmate m got the ball last after t tosses. nnwhere m and t are for you to determine. You may assume that t will be no larger than 100,000. nNote that classmate number 1 initially has the ball and tosses it to classmate k. Thus, number 1 has not yet been tossed the ball and so does not switch the direction he is thinking. nSample Inputnn4 2 L L L Ln4 3 R L L Rn10 4 R R L R L L R R L Rn0nSample OutputnnClassmate 3 got the ball last after 4 tosses.nClassmate 2 got the ball last after 4 tosses.nClassmate 9 got the ball last after 69 tosses. 问答

没有更多推荐了,返回首页