关于画图-一次性搞定各类高级论文作图及配色

关于画图-一次性搞定各类高级论文作图及配色

图(Figure)可以让各类论文的结果更加直观,有时候一张图片比一大段文字更有说服力。

但许多新手作者可能会有一连串的疑惑:数据这么多,什么时候该做什么类型的图?好图该怎么配色?那些精美又复杂的示意图又是怎么制作的呢?

没关系,自己不会,可以借鉴顶刊论文啊!站在巨人的肩膀上,你也是巨人!一起来学习一下Nature论文的图片及配色吧!
在这里插入图片描述
图片的类型有很多种,从图片形式大致上可以分为两种:一是由数据生成的,即数据型图片;二是非数据生成的,即示意型图片。但SCI论文的图通常都不会那么简单,很多时候都是多类型的图混合在一起的。

#01 折线图

当你需要展示一组或多组数据的连续范围或时间内的变化时,折线图是最佳选择。在相同的范围或时间内,不同组或样本的变化可以用不同颜色或不同符号的线条来表示。
在这里插入图片描述
黑、红、蓝是最经典的三色,但从Nature的文章来看,现在已经不流行了。多色搭配可以参考下图:
在这里插入图片描述
注:底下是十六进制色号!作图时如果软件色号是RGB形式,可以使用PPT中吸管功能查找对应的#编号。

#02 柱状图/直方图

如果数据不是连续的,但被划分为相互关联的类别时,例如不同的样本、方法或设置,则可以使用柱状图,这主要强调不同组别之间的对比。
在这里插入图片描述

#03 散点图

散点图可以用来说明两个变量(分别用X Y轴表示)之间的关系,但注意这两个变量都必须是连续的。散点图通过散点的疏密程度和变化趋势表示二个连续变量的数量关系,多组数据可以呈现较为明细的分布趋势。
在这里插入图片描述
注:同色系但深浅不一的效果可以通过调整透明度达到,不用再另行查找。

#04 绘图

绘图通常用来描述流程或组织结构关系等,例如一些杂志要求论文提供图片式摘要,就是一种示意绘图。
在这里插入图片描述

#05 分析系统导出图

有些研究结果是直接通过相关仪器生成的,比如微生物高通量测试结果、化合物质谱图等。这类图片如要展示在文章中,稍作处理即可。
在这里插入图片描述
不难看出,虽然配色多种多样,但Nature目前的风格多以明朗的浅色系为主导,常用的多是绿色、浅紫色及浅粉色,这使得图片显得清爽且高级。
下面分享作图的软件:

1. 数据型

数据生成图片推荐使用Origin软件制图,无论是数据方差、线条颜色还是分组排版,处理起来都十分方便。这也是众多科研人和杂志认同的制图软件。

其次还有Matlab软件,该软件其实功能更为全面,制图类型更多,但是使用起来也更为复杂,甚至要会编程,不推荐非相关领域的科研人使用。

2. 示意型

示意型图片相对数据图来说比较困难,因为需要作者自己设计和绘画。不过为了满足科研需求,已经有非常多种类的网页或软件可以用来制作示意图,并且提供模板,大大降低了制作难度。比如

★ BioRender

https://www.biorender.com/

★ Chemdraw

http://www.chemdraw.net.cn/

★ Lucidchart

https://www.lucidchart.com/pages/

★ Figdraw

https://www.figdraw.com/

此外,微软的PPT也是很好的制图软件,前提是善于运用其功能,并且搭配好相关的素材模板。

以下是各种配色方案:

在这里插入图片描述
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/24f12474fec2478b92664dab3c64e4b6.png
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

<think>嗯,用户现在问的是如果他要发SCI论文,怎么对预测结果进行可视化作图,应该用Origin还是Python里的包。首先,我需要理解用户的需求。用户可能在完成一个研究项目,使用Informer模型进行时间序列预测,现在想要将结果可视化以发表在SCI期刊上。他的问题涉及到工具选择,可能对两种工具都有一定的了解,但不确定哪个更适合学术发表。 首先,我要比较Origin和Python在科学绘图方面的优缺点。Origin是专门为科研绘图设计的软件,界面友好,适合生成高质量的图表,尤其是在物理、化学等传统实验科学领域应用广泛。而Python的Matplotlib、Seaborn、Plotly等库虽然灵活,但需要编程能力,可能在样式调整上需要更多代码,但适合处理大数据和自动化生成图表。 接下来,用户可能更关注的是学术期刊对图表的要求。通常,SCI期刊对图表的清晰度、格式(如矢量图)、可编辑性有要求。Origin生成的图表通常可以直接导出为EPS或TIFF格式,满足期刊要求。而Python生成的图表通过调整参数也可以达到类似效果,但需要更多的配置步骤。 另外,用户可能关心的是哪种工具更容易被审稿人接受。传统领域可能更习惯Origin的图表样式,而计算机科学或数据科学领域可能更接受Python生成的图表。需要根据目标期刊的常见图表类型来判断。 还需要考虑用户的技术背景。如果用户更熟悉编程,Python可能更高效,尤其是处理大量数据或需要自动化生成多个图表时。如果用户更习惯图形界面操作,Origin可能更易上手。 此外,用户可能在之前的交流中提到过使用Informer模型,因此可能需要将模型的预测结果(如时间序列预测)进行可视化,可能需要动态展示、交互式图表或静态高质量图片。Python的Plotly可以生成交互式图表,但期刊通常要求静态图片,所以可能需要导出为静态格式。 最后,建议用户结合两者的优点,比如用Python进行数据处理和初步可视化,再用Origin进行细节调整和排版,或者直接使用Python的Seaborn、Matplotlib调整到符合期刊要求。同时,提供具体的代码示例和步骤,帮助用户快速应用。</think>--- 在SCI论文中呈现预测结果的可视化时,工具选择需兼顾 **出版规范** 和 **图表表现力**。以下是Origin与Python的对比及具体实现方案: --- ### 一、工具选择策略 | **工具** | **优势** | **劣势** | **适用场景** | |----------------|--------------------------------------------------------------------------|-----------------------------------------|-----------------------------------| | **Origin** | - 符合传统期刊审美<br>- 直接导出出版级矢量图(EPS/PDF)<br>- 点选式精细调整 | - 处理大数据时卡顿<br>- 自动化能力弱 | 少量数据、需复杂标注的静态图 | | **Python** | - 支持大数据量渲染<br>- 代码可复现<br>- 灵活定制交互图 | - 默认样式需优化<br>- 字体/矢量需额外配置 | 多维数据、动态交互、批量生成需求 | **推荐原则**: 1. 若目标期刊是 **传统工科/实验科学类**(如Elsevier旗下期刊),优先用Origin 2. 若涉及 **机器学习/计算科学**(如Nature Machine Intelligence),优先用Python 3. 混合使用:Python生成数据 → Origin修饰(推荐折线图、热力图使用此方案) --- ### 二、Python可视化方案(附代码模板) #### 1. **基础预测对比图**(适用单变量时序预测) ```python import matplotlib.pyplot as plt import scienceplots # 安装:pip install scienceplots plt.style.use(['science', 'ieee', 'grid']) # 启用SCI绘图样式 fig, ax = plt.subplots(figsize=(6, 4)) ax.plot(y_true, label='Ground Truth', color='#2ca02c', linewidth=1.5) ax.plot(y_pred, label='Prediction', color='#d62728', linestyle='--', dashes=(5,2)) ax.set_xlabel('Time Step', fontsize=10) ax.set_ylabel('Value', fontsize=10) ax.legend(frameon=True, loc='upper right', fontsize=9) plt.savefig('forecast.pdf', dpi=300, bbox_inches='tight', format='pdf') # 矢量图输出 ``` #### 2. **置信区间图**(展示预测不确定性) ```python import seaborn as sns import numpy as np sns.set_style("whitegrid") plt.figure(figsize=(6,4)) plt.fill_between(x, y_lower, y_upper, alpha=0.3, color='#1f77b4', label='95% CI') plt.plot(x, y_true, 'k-', label='Observed') plt.plot(x, y_pred, 'r--', label='Median Forecast') plt.xlabel('Time (hour)') plt.ylabel('Temperature (°C)') plt.legend() plt.savefig('uncertainty.eps', format='eps') # 矢量图格式 ``` #### 3. **多维特征热力图**(展示变量相关性) ```python import matplotlib as mpl mpl.rcParams['font.family'] = 'Arial' # 设置期刊要求的字体 corr_matrix = df.corr() plt.figure(figsize=(8,6)) sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', annot_kws={"size":8}, vmin=-1, vmax=1) cbar = plt.gca().collections[0].colorbar cbar.ax.tick_params(labelsize=9) plt.xticks(rotation=45, ha='right', fontsize=9) plt.yticks(fontsize=9) plt.tight_layout() plt.savefig('correlation.tif', dpi=600, format='tiff') # TIFF格式投稿 ``` --- ### 三、Origin进阶技巧(提升图表接受率) 1. **字体规范**: - 默认字体改为 **Arial/Times New Roman**(路径:Preferences → Options → Text Fonts) - 字号设置:坐标轴标签 10-12pt,图例 9-10pt,标题 14pt(加粗) 2. **导出设置**: - 矢量图:File → Export Graphs → 格式选EPS/PDF,分辨率≥600 dpi - 位图:选TIFF格式,LZW压缩,尺寸匹配期刊栏宽(单栏8.5cm,双栏17.5cm) 3. **多图组合**: - 使用Layer工具叠加不同坐标系(如主图+缩略图) - 用Merge工具将多个Graph排列为Figure Panel --- ### 四、SCI投稿注意事项 1. **格式检查清单**: - 所有文字(包括图例、坐标)在图片放大300%后仍清晰 - 颜色对比度符合色盲友好标准(可用[ColorBrewer](https://colorbrewer2.org)校验) - 线型/标记样式在黑白打印时仍可区分 2. **版权声明**: - 若使用Python的`seaborn`等库,需在Methods章节注明版本号(示例代码见下表) | **软件/库** | **引用格式** | |--------------|-----------------------------------------------------------------------------| | Matplotlib | Hunter, J.D., 2007. Computing in science & engineering, 9(3), pp.90-95. | | Seaborn | Waskom, M.L., 2021. Journal of Open Source Software, 6(60), p.3021. | --- ### 五、工具链推荐 - **交互式分析**:Python + Plotly(生成HTML交互图供探索性分析) - **终稿制作**:Origin 2022(标注细节)或Python + LaTeX(组合生成PDF矢量图) - **格式转换**:Adobe Illustrator(最终调整EPS文件中的文字和图层) --- 通过合理搭配工具,既能满足期刊格式要求,又能高效呈现预测结果的科学价值。建议优先用Python完成核心可视化,再用Origin/AI进行出版级优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jr428

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值