SwinIR 代码注释版

import torch
import torch.nn as nn
import torch.nn.functional as F
from basicsr.utils.registry import ARCH_REGISTRY
from .arch_util import to_2tuple, trunc_normal_

def drop_path(x, drop_prob: float = 0., training: bool = False):
    """
    在残差块的主路径中按样本随机丢弃路径(Stochastic Depth)。
    这个函数用于在网络中随机丢弃路径,以防止过拟合。
    
    参数:
        x (Tensor): 输入张量,形状为 (batch_size, *),* 表示任意形状。
        drop_prob (float): 丢弃路径的概率。默认是 0(不丢弃)。
        training (bool): 标志表示模型是否处于训练模式。默认是 False。

    返回:
        Tensor: 输出张量,形状与输入张量相同,基于 drop_prob 丢弃部分路径。
    """
    # 如果丢弃概率为零或模型不在训练模式下,直接返回输入张量
    if drop_prob == 0. or not training:
        return x

    # 计算保留路径的概率
    keep_prob = 1 - drop_prob

    # 创建一个形状与输入张量相匹配的元组,但批次维度保持不变,其余维度为 1
    shape = (x.shape[0], ) + (1, ) * (x.ndim - 1)  # 适用于不同维度的张量,而不仅仅是二维卷积网络

    # 创建一个随机张量,使用与输入张量相同的设备和数据类型,每个元素加上保留概率
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)

    # 将随机张量二值化(元素变为 0 或 1)
    random_tensor.floor_()

    # 通过将输入张量除以保留概率并乘以随机张量来缩放输入张量
    output = x.div(keep_prob) * random_tensor
    return output

class DropPath(nn.Module):
    """
    在残差块的主路径中按样本随机丢弃路径(Stochastic Depth)。
    这个类是 drop_path 函数的模块封装,方便整合到模型中。

    参数:
        drop_prob (float, optional): 丢弃路径的概率。默认是 None。
    """

    def __init__(self, drop_prob=None):
        """
        初始化 DropPath 类。

        参数:
            drop_prob (float, optional): 丢弃路径的概率。默认是 None。
        """
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob  # 存储丢弃路径的概率

    def forward(self, x):
        """
        在前向传播过程中应用 drop_path 函数。

        参数:
            x (Tensor): 输入张量,形状为 (batch_size, *),* 表示任意形状。

        返回:
            Tensor: 输出张量,形状与输入张量相同,基于 drop_prob 丢弃部分路径。
        """
        return drop_path(x, self.drop_prob, self.training)  # 调用 drop_path 函数

import torch

def window_partition(x, window_size):
    """
    将输入张量分割成多个窗口。

    参数:
        x (Tensor): 输入张量,形状为 (b, h, w, c),其中 b 是批次大小,h 是高度,w 是宽度,c 是通道数。
        window_size (int): 窗口大小。

    返回:
        Tensor: 分割后的窗口张量,形状为 (num_windows*b, window_size, window_size, c)。
    """
    # 获取输入张量的形状
    b, h, w, c = x.shape
    # 重新调整输入张量的形状以便分割成多个窗口
    x = x.view(b, h // window_size, window_size, w // window_size, window_size, c)
    # 调整张量的维度顺序,并合并窗口维度
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c)
    return windows

def window_reverse(windows, window_size, h, w):
    """
    将分割的窗口恢复成原始图像。

    参数:
        windows (Tensor): 分割的窗口张量,形状为 (num_windows*b, window_size, window_size, c)。
        window_size (int): 窗口大小。
        h (int): 原始图像的高度。
        w (int): 原始图像的宽度。

    返回:
        Tensor: 恢复后的图像张量,形状为 (b, h, w, c)。
    """
    # 计算批次大小
    b = int(windows.shape[0] / (h * w / window_size / window_size))
    # 重新调整窗口张量的形状
    x = windows.view(b, h // window_size, w // window_size, window_size, window_size, -1)
    # 调整张量的维度顺序,并合并窗口维度,恢复成原始图像的形状
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1)
    return x

import torch
import torch.nn as nn

class WindowAttention(nn.Module):
    """
    基于窗口的多头自注意力(W-MSA)模块,具有相对位置偏置。
    支持移位和非移位窗口。

    参数:
        dim (int): 输入通道的数量。
        window_size (tuple[int]): 窗口的高度和宽度。
        num_heads (int): 注意力头的数量。
        qkv_bias (bool, optional): 如果为 True,则为查询、键、值添加可学习的偏置。默认值为 True。
        qk_scale (float, optional): 如果设置,则覆盖默认的 qk 缩放值 head_dim ** -0.5。
        attn_drop (float, optional): 注意力权重的 dropout 率。默认值为 0.0。
        proj_drop (float, optional): 输出的 dropout 率。默认值为 0.0。

    输入:
        x: 输入特征,形状为 (num_windows*b, n, c),其中 num_windows 是窗口的数量,b 是批次大小,n 是窗口内的令牌数量,c 是通道数。
        mask: (0/-inf) 掩码,形状为 (num_windows, Wh*Ww, Wh*Ww) 或 None。

    输出:
        Tensor: 输出特征,形状为 (num_windows*b, n, c)。
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.dim = dim
        self.window_size = window_size  # 窗口的高度和宽度
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5  # 缩放因子

        # 定义相对位置偏置参数表
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        # 获取窗口内每个令牌的相对位置索引
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[0] - 1  # 相对位置从0开始
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer('relative_position_index', relative_position_index)

        # 定义查询、键和值的线性变换
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)  # 注意力 dropout
        self.proj = nn.Linear(dim, dim)  # 输出投影
        self.proj_drop = nn.Dropout(proj_drop)  # 输出投影 dropout

        # 初始化相对位置偏置参数表
        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)  # Softmax 层,用于注意力计算

    def forward(self, x, mask=None):
        """
        前向传播函数。

        参数:
            x (Tensor): 输入特征,形状为 (num_windows*b, n, c)。
            mask (Tensor, optional): 掩码,形状为 (num_windows, Wh*Ww, Wh*Ww) 或 None。

        返回:
            Tensor: 输出特征,形状为 (num_windows*b, n, c)。
        """
        b_, n, c = x.shape  # 获取输入的形状
        # 将输入特征转换为查询、键和值
        qkv = self.qkv(x).reshape(b_, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # 分别获取查询、键和值

        q = q * self.scale  # 缩放查询向量
        attn = (q @ k.transpose(-2, -1))  # 计算注意力分数

        # 添加相对位置偏置
        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        # 如果提供了掩码,则应用掩码
        if mask is not None:
            nw = mask.shape[0]
            attn = attn.view(b_ // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, n, n)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)  # 应用注意力 dropout

        # 将注意力应用到值向量上
        x = (attn @ v).transpose(1, 2).reshape(b_, n, c)
        x = self.proj(x)  # 输出投影
        x = self.proj_drop(x)  # 输出投影 dropout
        return x

    def extra_repr(self) -> str:
        return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'

    def flops(self, n):
        """
        计算 FLOPs(浮点运算次数)。
        
        参数:
            n (int): 窗口内的令牌数量。

        返回:
            int: FLOPs 数量。
        """
        flops = 0
        # 查询、键和值的线性变换
        flops += n * self.dim * 3 * self.dim
        # 注意力计算 (q @ k.transpose)
        flops += self.num_heads * n * (self.dim // self.num_heads) * n
        # 应用注意力到值向量 (attn @ v)
        flops += self.num_heads * n * n * (self.dim // self.num_heads)
        # 输出投影
        flops += n * self.dim * self.dim
        return flops

import torch
import torch.nn as nn

class SwinTransformerBlock(nn.Module):
    r""" Swin Transformer Block.
    
    这个类定义了一个Swin Transformer块,包含窗口多头自注意力和MLP块。
    
    参数:
        dim (int): 输入通道的数量。
        input_resolution (tuple[int]): 输入的分辨率 (高度, 宽度)。
        num_heads (int): 注意力头的数量。
        window_size (int): 窗口大小。
        shift_size (int): SW-MSA 的移位大小。
        mlp_ratio (float): MLP隐藏层维度与嵌入维度的比率。
        qkv_bias (bool, optional): 如果为True,则为查询、键和值添加可学习的偏置。默认值为True。
        qk_scale (float, optional): 如果设置,则覆盖默认的 qk 缩放值 head_dim ** -0.5。
        drop (float, optional): Dropout率。默认值为0.0。
        attn_drop (float, optional): 注意力权重的Dropout率。默认值为0.0。
        drop_path (float, optional): 随机深度的比率。默认值为0.0。
        act_layer (nn.Module, optional): 激活层。默认值为 nn.GELU。
        norm_layer (nn.Module, optional): 归一化层。默认值为 nn.LayerNorm。

    输入:
        x: 输入特征,形状为 (batch_size, seq_len, dim)。
        x_size: 输入的空间维度 (高度, 宽度)。

    输出:
        Tensor: 输出特征,形状为 (batch_size, seq_len, dim)。
    """

    def __init__(self,
                 dim,
                 input_resolution,
                 num_heads,
                 window_size=7,
                 shift_size=0,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim  # 输入通道数
        self.input_resolution = input_resolution  # 输入分辨率
        self.num_heads = num_heads  # 注意力头数量
        self.window_size = window_size  # 窗口大小
        self.shift_size = shift_size  # 移位大小
        self.mlp_ratio = mlp_ratio  # MLP比率

        # 如果窗口大小大于输入分辨率,则不进行窗口划分
        if min(self.input_resolution) <= self.window_size:
            self.shift_size = 0
            self.window_size = min(self.input_resolution)
        assert 0 <= self.shift_size < self.window_size, 'shift_size must be in 0-window_size'

        self.norm1 = norm_layer(dim)  # 第一层归一化
        self.attn = WindowAttention(
            dim,
            window_size=to_2tuple(self.window_size),
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop)  # 窗口注意力层

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()  # 随机深度
        self.norm2 = norm_layer(dim)  # 第二层归一化
        mlp_hidden_dim = int(dim * mlp_ratio)  # MLP隐藏层维度
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)  # MLP层

        if self.shift_size > 0:
            attn_mask = self.calculate_mask(self.input_resolution)  # 计算注意力掩码
        else:
            attn_mask = None

        self.register_buffer('attn_mask', attn_mask)  # 注册注意力掩码

    def calculate_mask(self, x_size):
        """
        计算 SW-MSA 的注意力掩码。

        参数:
            x_size (tuple[int]): 输入的空间维度 (高度, 宽度)。

        返回:
            Tensor: 注意力掩码,形状为 (num_windows, window_size*window_size, window_size*window_size)。
        """
        h, w = x_size
        img_mask = torch.zeros((1, h, w, 1))  # 创建掩码张量,形状为 (1, 高度, 宽度, 1)
        h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt  # 设置掩码值
                cnt += 1

        mask_windows = window_partition(img_mask, self.window_size)  # 划分窗口
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))

        return attn_mask

    def forward(self, x, x_size):
        """
        前向传播函数。

        参数:
            x (Tensor): 输入特征,形状为 (batch_size, seq_len, dim)。
            x_size (tuple[int]): 输入的空间维度 (高度, 宽度)。

        返回:
            Tensor: 输出特征,形状为 (batch_size, seq_len, dim)。
        """
        h, w = x_size  # 获取输入的高度和宽度
        b, _, c = x.shape  # 获取输入的批次大小和通道数

        shortcut = x  # 残差连接
        x = self.norm1(x)  # 第一层归一化
        x = x.view(b, h, w, c)  # 重塑张量为图像形状

        # 循环移位
        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
        else:
            shifted_x = x

        # 划分窗口
        x_windows = window_partition(shifted_x, self.window_size)  # nw*b, window_size, window_size, c
        x_windows = x_windows.view(-1, self.window_size * self.window_size, c)  # nw*b, window_size*window_size, c

        # W-MSA/SW-MSA (兼容测试图像的形状是窗口大小的倍数)
        if self.input_resolution == x_size:
            attn_windows = self.attn(x_windows, mask=self.attn_mask)  # nw*b, window_size*window_size, c
        else:
            attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))

        # 合并窗口
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c)
        shifted_x = window_reverse(attn_windows, self.window_size, h, w)  # b h' w' c

        # 逆循环移位
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x
        x = x.view(b, h * w, c)  # 恢复为 (batch_size, seq_len, dim) 形状

        # FFN
        x = shortcut + self.drop_path(x)  # 残差连接
        x = x + self.drop_path(self.mlp(self.norm2(x)))  # MLP 和 归一化

        return x

    def extra_repr(self) -> str:
        """
        返回类的额外表示信息。
        """
        return (f'dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, '
                f'window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}')

    def flops(self):
        """
        计算 FLOPs(浮点运算次数)。

        返回:
            int: FLOPs 数量。
        """
        flops = 0
        h, w = self.input_resolution
        # norm1
        flops += self.dim * h * w
        # W-MSA/SW-MSA
        nw = h * w / self.window_size / self.window_size
        flops += nw * self.attn.flops(self.window_size * self.window_size)
        # mlp
        flops += 2 * h * w * self.dim * self.dim * self.mlp_ratio
        # norm2
        flops += self.dim * h * w
        return flops

import torch
import torch.nn as nn

class PatchMerging(nn.Module):
    r""" Patch Merging Layer.
    
    这个类定义了一个Patch合并层,用于将输入的Patch合并,减少空间维度并增加通道维度。
    
    参数:
        input_resolution (tuple[int]): 输入特征的分辨率 (高度, 宽度)。
        dim (int): 输入通道的数量。
        norm_layer (nn.Module, optional): 归一化层。默认是 nn.LayerNorm。

    输入:
        x: 输入特征,形状为 (batch_size, h*w, dim)。

    输出:
        Tensor: 合并后的特征,形状为 (batch_size, h/2*w/2, 2*dim)。
    """

    def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.input_resolution = input_resolution  # 输入分辨率
        self.dim = dim  # 输入通道数
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)  # 线性层,用于减少空间维度并增加通道维度
        self.norm = norm_layer(4 * dim)  # 归一化层

    def forward(self, x):
        """
        前向传播函数。

        参数:
            x (Tensor): 输入特征,形状为 (batch_size, h*w, dim)。

        返回:
            Tensor: 合并后的特征,形状为 (batch_size, h/2*w/2, 2*dim)。
        """
        h, w = self.input_resolution  # 获取输入分辨率
        b, seq_len, c = x.shape  # 获取输入形状
        assert seq_len == h * w, '输入特征的大小不正确'
        assert h % 2 == 0 and w % 2 == 0, f'输入分辨率 ({h}*{w}) 不是偶数。'

        x = x.view(b, h, w, c)  # 重新调整输入张量的形状

        # 按照窗口大小进行划分,并在通道维度上拼接
        x0 = x[:, 0::2, 0::2, :]  # b, h/2, w/2, c
        x1 = x[:, 1::2, 0::2, :]  # b, h/2, w/2, c
        x2 = x[:, 0::2, 1::2, :]  # b, h/2, w/2, c
        x3 = x[:, 1::2, 1::2, :]  # b, h/2, w/2, c
        x = torch.cat([x0, x1, x2, x3], -1)  # b, h/2, w/2, 4*c
        x = x.view(b, -1, 4 * c)  # b, h/2*w/2, 4*c

        x = self.norm(x)  # 归一化
        x = self.reduction(x)  # 线性层降维

        return x

    def extra_repr(self) -> str:
        """
        返回类的额外表示信息。
        """
        return f'input_resolution={self.input_resolution}, dim={self.dim}'

    def flops(self):
        """
        计算 FLOPs(浮点运算次数)。

        返回:
            int: FLOPs 数量。
        """
        h, w = self.input_resolution
        flops = h * w * self.dim  # 归一化 FLOPs
        flops += (h // 2) * (w // 2) * 4 * self.dim * 2 * self.dim  # 线性层 FLOPs
        return flops


class BasicLayer(nn.Module):
    """ A basic Swin Transformer layer for one stage.
    
    这个类定义了一个基本的Swin Transformer层,包括多个Swin Transformer块和一个可选的下采样层。

    参数:
        dim (int): 输入通道的数量。
        input_resolution (tuple[int]): 输入的分辨率 (高度, 宽度)。
        depth (int): 块的数量。
        num_heads (int): 注意力头的数量。
        window_size (int): 本地窗口大小。
        mlp_ratio (float): MLP隐藏层维度与嵌入维度的比率。
        qkv_bias (bool, optional): 如果为True,则为查询、键和值添加可学习的偏置。默认值为True。
        qk_scale (float, optional): 如果设置,则覆盖默认的 qk 缩放值 head_dim ** -0.5。
        drop (float, optional): Dropout率。默认值为0.0。
        attn_drop (float, optional): 注意力权重的Dropout率。默认值为0.0。
        drop_path (float, optional): 随机深度的比率。默认值为0.0。
        norm_layer (nn.Module, optional): 归一化层。默认值为 nn.LayerNorm。
        downsample (nn.Module | None, optional): 层结束时的下采样层。默认值为None。
        use_checkpoint (bool): 是否使用检查点以节省内存。默认值为False。

    输入:
        x: 输入特征,形状为 (batch_size, seq_len, dim)。
        x_size: 输入的空间维度 (高度, 宽度)。

    输出:
        Tensor: 输出特征,形状为 (batch_size, seq_len, dim)。
    """

    def __init__(self,
                 dim,
                 input_resolution,
                 depth,
                 num_heads,
                 window_size,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 norm_layer=nn.LayerNorm,
                 downsample=None,
                 use_checkpoint=False):

        super().__init__()
        self.dim = dim  # 输入通道数
        self.input_resolution = input_resolution  # 输入分辨率
        self.depth = depth  # 块的数量
        self.use_checkpoint = use_checkpoint  # 是否使用检查点

        # 构建Swin Transformer块
        self.blocks = nn.ModuleList([
            SwinTransformerBlock(
                dim=dim,
                input_resolution=input_resolution,
                num_heads=num_heads,
                window_size=window_size,
                shift_size=0 if (i % 2 == 0) else window_size // 2,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop,
                attn_drop=attn_drop,
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer) for i in range(depth)
        ])

        # 下采样层
        if downsample is not None:
            self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def forward(self, x, x_size):
        """
        前向传播函数。

        参数:
            x (Tensor): 输入特征,形状为 (batch_size, seq_len, dim)。
            x_size (tuple[int]): 输入的空间维度 (高度, 宽度)。

        返回:
            Tensor: 输出特征,形状为 (batch_size, seq_len, dim)。
        """
        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x)  # 使用检查点
            else:
                x = blk(x, x_size)  # 不使用检查点
        if self.downsample is not None:
            x = self.downsample(x)  # 下采样
        return x

    def extra_repr(self) -> str:
        """
        返回类的额外表示信息。
        """
        return f'dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}'

    def flops(self):
        """
        计算 FLOPs(浮点运算次数)。

        返回:
            int: FLOPs 数量。
        """
        flops = 0
        for blk in self.blocks:
            flops += blk.flops()  # 计算每个块的FLOPs
        if self.downsample is not None:
            flops += self.downsample.flops()  # 计算下采样层的FLOPs
        return flops

import torch
import torch.nn as nn

class RSTB(nn.Module):
    """Residual Swin Transformer Block (RSTB).
    
    这个类定义了一个残差Swin Transformer块,包含一个基础层和一个卷积层,用于特征提取和残差连接。

    参数:
        dim (int): 输入通道的数量。
        input_resolution (tuple[int]): 输入分辨率 (高度, 宽度)。
        depth (int): 块的数量。
        num_heads (int): 注意力头的数量。
        window_size (int): 本地窗口大小。
        mlp_ratio (float): MLP隐藏层维度与嵌入维度的比率。
        qkv_bias (bool, optional): 如果为True,则为查询、键和值添加可学习的偏置。默认值为True。
        qk_scale (float, optional): 如果设置,则覆盖默认的 qk 缩放值 head_dim ** -0.5。
        drop (float, optional): Dropout率。默认值为0.0。
        attn_drop (float, optional): 注意力权重的Dropout率。默认值为0.0。
        drop_path (float, optional): 随机深度的比率。默认值为0.0。
        norm_layer (nn.Module, optional): 归一化层。默认值为 nn.LayerNorm。
        downsample (nn.Module | None, optional): 层结束时的下采样层。默认值为None。
        use_checkpoint (bool): 是否使用检查点以节省内存。默认值为False。
        img_size (int): 输入图像的大小。默认值为224。
        patch_size (int): Patch大小。默认值为4。
        resi_connection (str): 残差连接的卷积块类型。默认值为'1conv'。

    输入:
        x (Tensor): 输入特征,形状为 (batch_size, seq_len, dim)。
        x_size (tuple[int]): 输入的空间维度 (高度, 宽度)。

    输出:
        Tensor: 输出特征,形状为 (batch_size, seq_len, dim)。
    """

    def __init__(self,
                 dim,
                 input_resolution,
                 depth,
                 num_heads,
                 window_size,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 norm_layer=nn.LayerNorm,
                 downsample=None,
                 use_checkpoint=False,
                 img_size=224,
                 patch_size=4,
                 resi_connection='1conv'):
        super(RSTB, self).__init__()

        self.dim = dim  # 输入通道数
        self.input_resolution = input_resolution  # 输入分辨率

        # 定义基础层
        self.residual_group = BasicLayer(
            dim=dim,
            input_resolution=input_resolution,
            depth=depth,
            num_heads=num_heads,
            window_size=window_size,
            mlp_ratio=mlp_ratio,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            drop=drop,
            attn_drop=attn_drop,
            drop_path=drop_path,
            norm_layer=norm_layer,
            downsample=downsample,
            use_checkpoint=use_checkpoint)

        # 定义卷积层,根据 resi_connection 参数选择不同的卷积块
        if resi_connection == '1conv':
            self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
        elif resi_connection == '3conv':
            self.conv = nn.Sequential(
                nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Conv2d(dim // 4, dim, 3, 1, 1))

        # 定义Patch嵌入层和反嵌入层
        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
        self.patch_unembed = PatchUnEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)

    def forward(self, x, x_size):
        """
        前向传播函数。

        参数:
            x (Tensor): 输入特征,形状为 (batch_size, seq_len, dim)。
            x_size (tuple[int]): 输入的空间维度 (高度, 宽度)。

        返回:
            Tensor: 输出特征,形状为 (batch_size, seq_len, dim)。
        """
        # 通过基础层,反嵌入,卷积和嵌入过程,最后加上输入实现残差连接
        return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x

    def flops(self):
        """
        计算 FLOPs(浮点运算次数)。

        返回:
            int: FLOPs 数量。
        """
        flops = 0
        flops += self.residual_group.flops()  # 计算基础层的FLOPs
        h, w = self.input_resolution
        flops += h * w * self.dim * self.dim * 9  # 卷积层的FLOPs
        flops += self.patch_embed.flops()  # Patch嵌入层的FLOPs
        flops += self.patch_unembed.flops()  # Patch反嵌入层的FLOPs

        return flops

# PatchEmbed 类的详细注释
class PatchEmbed(nn.Module):
    r""" Image to Patch Embedding
    
    这个类定义了一个图像到Patch嵌入的层,将输入图像分割成多个Patch,并将其展平和嵌入到更高维度的空间中。

    参数:
        img_size (int): 图像大小。默认值为224。
        patch_size (int): Patch大小。默认值为4。
        in_chans (int): 输入图像的通道数。默认值为3。
        embed_dim (int): 线性投影的输出通道数。默认值为96。
        norm_layer (nn.Module, optional): 归一化层。默认值为None。

    输入:
        x (Tensor): 输入图像,形状为 (batch_size, in_chans, img_size, img_size)。

    输出:
        Tensor: 嵌入后的特征,形状为 (batch_size, num_patches, embed_dim)。
    """

    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)  # 将图像大小转换为元组
        patch_size = to_2tuple(patch_size)  # 将Patch大小转换为元组
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]  # 计算Patch的分辨率
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]  # 计算Patch的数量

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)  # 定义归一化层
        else:
            self.norm = None

    def forward(self, x):
        """
        前向传播函数。

        参数:
            x (Tensor): 输入图像,形状为 (batch_size, in_chans, img_size, img_size)。

        返回:
            Tensor: 嵌入后的特征,形状为 (batch_size, num_patches, embed_dim)。
        """
        x = x.flatten(2).transpose(1, 2)  # 展平并转换维度
        if self.norm is not None:
            x = self.norm(x)  # 应用归一化
        return x

    def flops(self):
        """
        计算 FLOPs(浮点运算次数)。

        返回:
            int: FLOPs 数量。
        """
        flops = 0
        h, w = self.img_size
        if self.norm is not None:
            flops += h * w * self.embed_dim  # 归一化层的FLOPs
        return flops

# PatchUnEmbed 类的详细注释
class PatchUnEmbed(nn.Module):
    r""" Image to Patch Unembedding
    
    这个类定义了一个Patch反嵌入的层,将嵌入的特征恢复为图像。

    参数:
        img_size (int): 图像大小。默认值为224。
        patch_size (int): Patch大小。默认值为4。
        in_chans (int): 输入图像的通道数。默认值为3。
        embed_dim (int): 线性投影的输出通道数。默认值为96。
        norm_layer (nn.Module, optional): 归一化层。默认值为None。

    输入:
        x (Tensor): 嵌入的特征,形状为 (batch_size, num_patches, embed_dim)。
        x_size (tuple[int]): 输入的空间维度 (高度, 宽度)。

    输出:
        Tensor: 恢复后的图像,形状为 (batch_size, in_chans, img_size, img_size)。
    """

    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)  # 将图像大小转换为元组
        patch_size = to_2tuple(patch_size)  # 将Patch大小转换为元组
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]  # 计算Patch的分辨率
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]  # 计算Patch的数量

        self.in_chans = in_chans
        self.embed_dim = embed_dim

    def forward(self, x, x_size):
        """
        前向传播函数。

        参数:
            x (Tensor): 嵌入的特征,形状为 (batch_size, num_patches, embed_dim)。
            x_size (tuple[int]): 输入的空间维度 (高度, 宽度)。

        返回:
            Tensor: 恢复后的图像,形状为 (batch_size, in_chans, img_size, img_size)。
        """
        x = x.transpose(1, 2).view(x.shape[0], self.embed_dim, x_size[0], x_size[1])  # 恢复形状
        return x

    def flops(self):
        """
        计算 FLOPs(浮点运算次数)。

        返回:
            int: FLOPs 数量。
        """
        flops = 0
        return flops



@ARCH_REGISTRY.register()
class SwinIR(nn.Module):
    """ SwinIR: 使用Swin Transformer进行图像恢复的PyTorch实现。

    参数:
        img_size (int | tuple(int)): 输入图像大小。默认值为 64。
        patch_size (int | tuple(int)): Patch 大小。默认值为 1。
        in_chans (int): 输入图像通道数。默认值为 3。
        embed_dim (int): Patch 嵌入维度。默认值为 96。
        depths (tuple(int)): 每个Swin Transformer层的深度。
        num_heads (tuple(int)): 不同层中的注意力头数量。
        window_size (int): 窗口大小。默认值为 7。
        mlp_ratio (float): MLP隐藏层维度与嵌入维度的比率。默认值为 4。
        qkv_bias (bool): 如果为True,则为查询、键和值添加可学习的偏置。默认值为 True。
        qk_scale (float): 如果设置,则覆盖默认的 qk 缩放值 head_dim ** -0.5。默认值为 None。
        drop_rate (float): Dropout率。默认值为 0。
        attn_drop_rate (float): 注意力权重的Dropout率。默认值为 0。
        drop_path_rate (float): 随机深度的比率。默认值为 0.1。
        norm_layer (nn.Module): 归一化层。默认值为 nn.LayerNorm。
        ape (bool): 如果为True,则为patch嵌入添加绝对位置嵌入。默认值为 False。
        patch_norm (bool): 如果为True,则在patch嵌入后添加归一化。默认值为 True。
        use_checkpoint (bool): 是否使用检查点以节省内存。默认值为 False。
        upscale: 放大因子。用于图像超分辨率的值为 2/3/4/8,用于去噪和压缩伪影消除的值为 1。
        img_range: 图像范围。1. 或 255。
        upsampler: 重建模块。'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None。
        resi_connection: 残差连接前的卷积块。'1conv'/'3conv'。

    输入:
        x (Tensor): 输入图像,形状为 (batch_size, in_chans, height, width)。

    输出:
        Tensor: 恢复后的图像,形状为 (batch_size, in_chans, height*upscale, width*upscale)。
    """

    def __init__(self,
                 img_size=64,
                 patch_size=1,
                 in_chans=3,
                 embed_dim=96,
                 depths=(6, 6, 6, 6),
                 num_heads=(6, 6, 6, 6),
                 window_size=7,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm,
                 ape=False,
                 patch_norm=True,
                 use_checkpoint=False,
                 upscale=2,
                 img_range=1.,
                 upsampler='',
                 resi_connection='1conv',
                 **kwargs):
        super(SwinIR, self).__init__()
        num_in_ch = in_chans
        num_out_ch = in_chans
        num_feat = 64
        self.img_range = img_range
        if in_chans == 3:
            rgb_mean = (0.4488, 0.4371, 0.4040)
            self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
        else:
            self.mean = torch.zeros(1, 1, 1, 1)
        self.upscale = upscale
        self.upsampler = upsampler

        # ------------------------- 1, 浅层特征提取 ------------------------- #
        self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)

        # ------------------------- 2, 深层特征提取 ------------------------- #
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.ape = ape
        self.patch_norm = patch_norm
        self.num_features = embed_dim
        self.mlp_ratio = mlp_ratio

        # 将图像分割成不重叠的patch
        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=embed_dim,
            embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        num_patches = self.patch_embed.num_patches
        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution

        # 将不重叠的patch合并成图像
        self.patch_unembed = PatchUnEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=embed_dim,
            embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)

        # 绝对位置嵌入
        if self.ape:
            self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
            trunc_normal_(self.absolute_pos_embed, std=.02)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # 随机深度
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # 随机深度衰减规则

        # 构建残差Swin Transformer块(RSTB)
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = RSTB(
                dim=embed_dim,
                input_resolution=(patches_resolution[0], patches_resolution[1]),
                depth=depths[i_layer],
                num_heads=num_heads[i_layer],
                window_size=window_size,
                mlp_ratio=self.mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],  # 对SR结果没有影响
                norm_layer=norm_layer,
                downsample=None,
                use_checkpoint=use_checkpoint,
                img_size=img_size,
                patch_size=patch_size,
                resi_connection=resi_connection)
            self.layers.append(layer)
        self.norm = norm_layer(self.num_features)

        # 构建深层特征提取中的最后一个卷积层
        if resi_connection == '1conv':
            self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
        elif resi_connection == '3conv':
            self.conv_after_body = nn.Sequential(
                nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))

        # ------------------------- 3, 高质量图像重建 ------------------------- #
        if self.upsampler == 'pixelshuffle':
            self.conv_before_upsample = nn.Sequential(
                nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
            self.upsample = Upsample(upscale, num_feat)
            self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
        elif self.upsampler == 'pixelshuffledirect':
            self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
                                            (patches_resolution[0], patches_resolution[1]))
        elif self.upsampler == 'nearest+conv':
            assert self.upscale == 4, 'only support x4 now.'
            self.conv_before_upsample = nn.Sequential(
                nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
            self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
            self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
            self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
            self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
            self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
        else:
            self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'absolute_pos_embed'}

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {'relative_position_bias_table'}

    def forward_features(self, x):
        x_size = (x.shape[2], x.shape[3])
        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)

        for layer in self.layers:
            x = layer(x, x_size)

        x = self.norm(x)  # b, seq_len, c
        x = self.patch_unembed(x, x_size)

        return x

    def forward(self, x):
        self.mean = self.mean.type_as(x)
        x = (x - self.mean) * self.img_range

        if self.upsampler == 'pixelshuffle':
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.conv_before_upsample(x)
            x = self.conv_last(self.upsample(x))
        elif self.upsampler == 'pixelshuffledirect':
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.upsample(x)
        elif self.upsampler == 'nearest+conv':
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.conv_before_upsample(x)
            x = self.lrelu(self.conv_up1(F.interpolate(x, scale_factor=2, mode='nearest')))
            x = self.lrelu(self.conv_up2(F.interpolate(x, scale_factor=2, mode='nearest')))
            x = self.conv_last(self.lrelu(self.conv_hr(x)))
        else:
            x_first = self.conv_first(x)
            res = self.conv_after_body(self.forward_features(x_first)) + x_first
            x = x + self.conv_last(res)

        x = x / self.img_range + self.mean

        return x

    def flops(self):
        flops = 0
        h, w = self.patches_resolution
        flops += h * w * 3 * self.embed_dim * 9
        flops += self.patch_embed.flops()
        for layer in self.layers:
            flops += layer.flops()
        flops += h * w * 3 * self.embed_dim * self.embed_dim
        flops += self.upsample.flops()
        return flops


if __name__ == '__main__':
    upscale = 4
    window_size = 8
    height = (1024 // upscale // window_size + 1) * window_size
    width = (720 // upscale // window_size + 1) * window_size
    model = SwinIR(
        upscale=2,
        img_size=(height, width),
        window_size=window_size,
        img_range=1.,
        depths=[6, 6, 6, 6],
        embed_dim=60,
        num_heads=[6, 6, 6, 6],
        mlp_ratio=2,
        upsampler='pixelshuffledirect')
    print(model)
    print(height, width, model.flops() / 1e9)

    x = torch.randn((1, 3, height, width))
    x = model(x)
    print(x.shape)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值