电池SOC
文章平均质量分 74
新能源汽车仿真团队
这个作者很懒,什么都没留下…
展开
-
电池SOC仿真系列-基于双卡尔曼滤波(KF+UKF)算法的电池SOC估算
前文讲述了基于扩展卡尔曼滤波(EKF)的,本期带来基于无迹卡尔曼滤波(Unscented Kalman Filter,UKF)的双卡尔曼滤波(KF+UKF)算法的电池SOC估算。原创 2022-09-04 10:40:30 · 3952 阅读 · 3 评论 -
电池SOC仿真系列-基于粒子群算法电池参数辨识
目前,主要的电池模型参数辨识方法有两大类:一种是基于传统的参数估计方法,例如:最小二乘拟合方法添加链接描述,基于遗忘因子最小二乘法添加链接描述,基于参数辨识工具箱的辨识方法添加链接描述。此类方法的优点是直观简单,适用于大部分电池管理系统;另一种方法是基于智能优化算法,例如遗传算法添加链接描述、粒子群算法及蜂群算法等。此类方法相对于传统方法在可靠性及鲁棒性方面具有一定的优势。...原创 2022-08-15 10:52:16 · 4661 阅读 · 1 评论 -
电动SOC仿真系列-考虑电池老化影响的电池UKF-SOC估算研究
考虑电池老化影响的电池UKF-SOC估算研究(无迹卡尔曼滤波算法) 传统的电池模型往往将电池容量设定为定值。然后在实际情况中,电池的容量会随着电池循环充放电次数的增加而减少。因此有必要在建立电池模型的时候,考虑电池容量受电池老化因素的影响。1、电池模型的构建 考虑具有温度影响的等效电路模型如下图所示: 上图中,Em表示电压源,R0表示欧姆内阻,R1C1表示电池极化效应。基于Simscape构建基于热效应的电池模型。 该电池模型的状态转移方程可表示为: 式中,R1C1以电池SOC和原创 2022-03-22 10:52:25 · 2665 阅读 · 0 评论 -
电池SOH仿真系列-基于LSTM神经网络的电池SOH估算方法
基于LSTM神经网络的电池SOH估算 循环神经网络(Recurrent Neural Network,RNN)与BP神经网络不同,RNN网络不仅考虑前一时刻的输入,同时还赋予网络对前面时刻信息的记忆能力。尽管RNN网络具有较高的精度,但其存在着梯度消失的问题。对此,出现了一系列改进的RNN网络,而LSTM神经网络就是其中改进效果最好的一种。基于LSTM神经网络的电池SOH估算方法具体如下所示: (1)锂离子电池循环寿命数据 数据来源于NASA研究中心搭建的锂离子电池测试平台,选取5号锂离子电池(原创 2022-01-19 18:01:19 · 7898 阅读 · 0 评论 -
电池SOC仿真系列-基于RNN的电池SOC估算研究
基于RNN算法的电池SOC估算 循环神经网络(Recurrent Neural Networks,RNN)是一种深度学习的神经网络框架,其与普通神经网络最本质上的区别在于,RNN可以保留上一时刻的隐藏层的状态。因此,RNN具有十分强大的学习能力。RNN网络的递推公式如下所示: 式中,ot表示RNN在t时刻的输出值,V表示输出层和隐含层之间的权重矩阵,st表示RNN在t时刻隐含层的数值,xt表示RNN在t时刻的输入值,U表示输入层和隐含层之间的权重矩阵,W表示st和st-1之间的权重矩阵,f表示隐含原创 2021-12-08 12:49:33 · 3479 阅读 · 3 评论 -
电池SOC仿真系列-基于GA-BP神经网络的电池SOC估算方法
基于GA-BP神经网络的电池SOC估算方法1、引言 考虑到遗传算法具有全局最优的特点,能够很好的优化BP神经网络的初始权值和阈值,克服BP神经网络陷入局部最优的缺点,本期内容为基于GA-BP神经网络的电池SOC估算方法。2、BP神经网络 BP学习算法根据梯度最速下降法原理,调整权值和阈值使得网络总误差达到最小。本文以电池温度、电流、电压3个影响因素作为BP网络的输入,电池SOC作为BP网络输出。 BP算法的步骤如下:clc ;clear all;load 电池测试数据.mat% 训原创 2021-08-11 19:44:15 · 5042 阅读 · 3 评论