电池SOH仿真系列-基于LSTM神经网络的电池SOH估算方法

基于 LSTM神经网络的电池SOH估算

  循环神经网络(Recurrent Neural Network,RNN)与BP神经网络不同,RNN网络不仅考虑前一时刻的输入,同时还赋予网络对前面时刻信息的记忆能力。尽管RNN网络具有较高的精度,但其存在着梯度消失的问题。对此,出现了一系列改进的RNN网络,而LSTM神经网络就是其中改进效果最好的一种。基于LSTM神经网络的电池SOH估算方法具体如下所示:
  (1)锂离子电池循环寿命数据
  数据来源于NASA研究中心搭建的锂离子电池测试平台,选取5号锂离子电池(额定容量为2Ah)。循环测试实验在室温下进行:以1.5A的恒流电流为电池充电,直到充电截止电压(4.2V),以恒压电流充电,直到充电电流降至20mA;在2A恒流(CC)模式下放电,直至电池分别降至2.7V、2.5V、2.2V、2.5V。当电池达到EOL(end-of-life, EOL)标准时,实验停止,额定容量下降30%。
  (2)数据预处理
  利用最大最小值归一化方法将数据放缩到0和1之间。
在这里插入图片描述
  式中,xmax是输入数据x的最大值,xmin是输入数据x的最小值。
  (3)仿真分析
  将NASA锂离子电池实验数据中的充电容量作为模型输入,模型的输出为以放电容量为参考的电池 SOH。经过训练,神经网络可以迭代得到网络权重及偏置具体参数。
在这里插入图片描述
  从图中可以看出,模型对于电池容量衰减的整体趋势预测是非常精准的。其具体代码如下所示:

function pre_data = LSTM_main(d,h,train_data,test_data)
%% 预处理
lag = 8;
% d = 51;
[train_input,train_output] = LSTM_data_process(d,train_data,lag); %数据处理

[train_input,min_input,max_input,train_output,min_output,max_output] = premnmx(train_input',train_output');

input_length = size(train_input,1); %样本输入长度
output_length = size(train_output,1); %样本输出长度
train_num = size(train_input,2); %训练样本个数
test_num = size(test_data,2); %测试样本个数
%% 网络参数初始化
% 结点数设置
input_num = input_length;
cell_num = 10;
output_num = output_length;
% 网络中门的偏置
bias_input_gate = rand(1,cell_num);
bias_forget_gate = rand(1,cell_num);
bias_output_gate = rand(1,cell_num);
%网络权重初始化
ab = 20;
weight_input_x = rand(input_num,cell_num)/ab;  
weight_input_h = rand(output_num,cell_num)/ab;  
weight_inputgate_x = rand(input_num,cell_num)/ab;  
weight_inputgate_h = rand(cell_num,cell_num)/ab;  
weight_forgetgate_x = rand(input_num,cell_num)/ab;  
weight_forgetgate_h = rand(cell_num,cell_num)/ab;  
weight_outputgate_x = rand(input_num,cell_num)/ab;  
weight_outputgate_h = rand(cell_num,cell_num)/ab;  
%hidden_output权重
weight_preh_h = rand(cell_num,output_num);
%网络状态初始化
cost_gate = 1e-6;
h_state = rand(output_num,train_num+test_num);
cell_state = rand(cell_num,train_num+test_num);
%% 网络训练学习
for iter = 1:3000 %迭代次数
    yita = 0.01;  %每次迭代权重调整比例
    for m = 1:train_num
    
        %前馈部分
        if(m==1)
            gate = tanh(train_input(:,m)' * weight_input_x);
            input_gate_input = train_input(:,m)' * weight_inputgate_x + bias_input_gate;
            output_gate_input = train_input(:,m)' * weight_outputgate_x + bias_output_gate;
            for n = 1:cell_num
                input_gate(1,n) = 1 / (1 + exp(-input_gate_input(1,n)));%输入门
                output_gate(1,n) = 1 / (1 + exp(-output_gate_input(1,n)));%输出门
                %sigmoid函数
            end
            forget_gate = zeros(1,cell_num);
            forget_gate_input = zeros(1,cell_num);
            cell_state(:,m) = (input_gate .* gate)';
            
        else
            gate = tanh(train_input(:,m)' * weight_input_x + h_state(:,m-1)' * weight_input_h);
            input_gate_input = train_input(:,m)' * weight_inputgate_x + cell_state(:,m-1)' * weight_inputgate_h + bias_input_gate;
            forget_gate_input = train_input(:,m)' * weight_forgetgate_x + cell_state(:,m-1)' * weight_forgetgate_h + bias_forget_gate;
            output_gate_input = train_input(:,m)' * weight_outputgate_x + cell_state(:,m-1)' * weight_outputgate_h + bias_output_gate;
            for n = 1:cell_num
                input_gate(1,n) = 1/(1+exp(-input_gate_input(1,n)));
                forget_gate(1,n) = 1/(1+exp(-forget_gate_input(1,n)));
                output_gate(1,n) = 1/(1+exp(-output_gate_input(1,n)));
            end
            cell_state(:,m) = (input_gate .* gate + cell_state(:,m-1)' .* forget_gate)';   
        end
  
        pre_h_state = tanh(cell_state(:,m)') .* output_gate;
        h_state(:,m) = (pre_h_state * weight_preh_h)';
        %误差计算
        Error = h_state(:,m) - train_output(:,m);
        Error_Cost(1,iter)=sum(Error.^2);  %误差的平方和(4个点的平方和)
        if(Error_Cost(1,iter)<cost_gate)   %判断是否满足误差最小条件
            flag = 1;
            break;
        else     
            [  weight_input_x,...
               weight_input_h,...
               weight_inputgate_x,...
               weight_inputgate_h,...
               weight_forgetgate_x,...
               weight_forgetgate_h,...
               weight_outputgate_x,...
               weight_outputgate_h,...
               weight_preh_h ] = LSTM_updata_weight(m,yita,Error,...
                                                   weight_input_x,...
                                                   weight_input_h,...
                                                   weight_inputgate_x,...
                                                   weight_inputgate_h,...
                                                   weight_forgetgate_x,...
                                                   weight_forgetgate_h,...
                                                   weight_outputgate_x,...
                                                   weight_outputgate_h,...
                                                   weight_preh_h,...
                                                   cell_state,h_state,...
                                                   input_gate,forget_gate,...
                                                   output_gate,gate,...
                                                   train_input,pre_h_state,...
                                                   input_gate_input,...
                                                   output_gate_input,...
                                                   forget_gate_input,input_num,cell_num);
       
        end
    end
    if(Error_Cost(1,iter)<cost_gate)
        break;
    end
end

%% 测试阶段
%数据加载
test_input = train_data(end-lag+1:end);
test_input = tramnmx(test_input',min_input,max_input);
% test_input = mapminmax('apply',test_input',ps_input);

%前馈
for m = train_num + 1:train_num + test_num
    gate = tanh(test_input' * weight_input_x + h_state(:,m-1)' * weight_input_h);
    input_gate_input = test_input' * weight_inputgate_x + h_state(:,m-1)' * weight_inputgate_h + bias_input_gate;
    forget_gate_input = test_input' * weight_forgetgate_x + h_state(:,m-1)' * weight_forgetgate_h + bias_forget_gate;
    output_gate_input = test_input' * weight_outputgate_x + h_state(:,m-1)' * weight_outputgate_h + bias_output_gate;
    for n = 1:cell_num
        input_gate(1,n) = 1/(1+exp(-input_gate_input(1,n)));
        forget_gate(1,n) = 1/(1+exp(-forget_gate_input(1,n)));
        output_gate(1,n) = 1/(1+exp(-output_gate_input(1,n)));  
    end
    cell_state(:,m) = (input_gate .* gate + cell_state(:,m-1)' .* forget_gate)';  
    pre_h_state = tanh(cell_state(:,m)') .* output_gate;
    h_state(:,m) = (pre_h_state * weight_preh_h)';
    
    % 将当前预测点作为下一步输入数据
    test_input = postmnmx(test_input,min_input,max_input);
    now_prepoint = postmnmx(h_state(:,m),min_output,max_output);
    %test_input = mapminmax('reverse',test_input,ps_input);
    test_input = [test_input(2:end); now_prepoint];
    test_input = tramnmx(test_input,min_input,max_input);
end

pre_data = postmnmx(h_state(:,train_num + h:h:train_num + test_num),min_output,max_output);

all_pre = postmnmx(h_state(:,1:h:train_num + test_num),min_output,max_output);

% 画图
figure
title('LSTM预测')
hold on
plot(1:size([train_data test_data],2),[train_data test_data], 'o-', 'color','r', 'linewidth', 1);
plot(size(train_data,2) + h:h:size([train_data test_data],2),pre_data, '*-','color','b','linewidth', 1);
plot([size(train_data,2) size(train_data,2)],[-0.01 0.01],'g-','LineWidth',4);
legend({ '真实值', '预测值'});
end

  想了解更过相关仿真,可以关注我的微信公众号。
在这里插入图片描述

<think>好的,我需要帮助用户设计一个基于神经网络的锂离子电池SOH估计器,并用Simulink进行仿真。首先,我得理清整个流程,确保每个步骤都正确。 用户提到了参考引用[1]和[2],其中[1]是关于SOC模式和Simulink仿真的,[2]涉及数据驱动方法神经网络的应用。结合这些信息,我应该从数据准备开始,因为数据是训练神经网络的基础。需要健康因子,比如恒流充电时间、峰值电压等,这些在引用[2]里提到过。然后,设计神经网络结构,可能用LSTM或GRU来处理时序数据,因为它们在SOH预测上有较好的表现,如引用[2]中的例子。 接下来是Simulink部分。用户可能不太熟悉如何将神经网络集成到Simulink中,所以需要详细说明。可能需要使用MATLAB的Deep Learning Toolbox来导出训练好的网络,然后在Simulink里用MATLAB Function块或者Neural Network Predictor块。引用[1]提到SOC模式的控制,可能需要在仿真中加入电池模型,考虑SOC的变化对SOH估计的影响。 验证和测试部分也很重要。用户需要知道如何设置测试用例,可能用实测数据或公开数据集(如NASA或CALCE)来验证模型准确性,如引用[2]中的方法。同时,调整参数和优化模型结构,确保仿真结果可靠。 可能遇到的问题包括数据预处理、模型过拟合,以及Simulink中的实时仿真性能。需要提醒用户注意这些点,并提供解决方案,比如交叉验证、正则化方法,或者简化模型结构。 最后,生成相关问题,帮助用户进一步深入,比如如何优化神经网络结构,如何处理实时数据,或者如何与其他控制策略集成,如引用[1]中的SOC控制策略结合。</think>### 基于神经网络的锂电池SOH估算Simulink仿真实现步骤 #### 1. **数据准备与特征提取** - **数据来源**:使用公开数据集(如NASA或CALCE电池数据集)或实验采集的充放电数据[^2]。 - **健康因子提取**: - 提取恒流充电时间、峰值电压、电压曲线斜率等特征作为输入。 - 使用数据预处理工具(如MATLAB的`preprocess`函数)对数据进行标准化。 - **标签定义**:SOH值(容量衰减比例),计算公式为: $$ \text{SOH} = \frac{C_{\text{current}}}{C_{\text{nominal}}} \times 100\% $$ #### 2. **神经网络设计与训练** - **网络结构选择**: - **LSTM/GRU**:适用于时序数据(如充放电曲线)[^2]。 - **全连接网络(DNN)**:适用于静态特征(如统计特征)。 - 示例代码(MATLAB): ```matlab layers = [sequenceInputLayer(inputSize) lstmLayer(128) fullyConnectedLayer(64) reluLayer() fullyConnectedLayer(1) regressionLayer()]; options = trainingOptions('adam', 'MaxEpochs', 100, 'MiniBatchSize', 32); net = trainNetwork(X_train, Y_train, layers, options); ``` - **模型验证**:使用交叉验证评估性能,目标误差参考值(如RMSE < 2%)。 #### 3. **Simulink仿真搭建** - **步骤分解**: 1. **电池模型**:使用Simscape Electrical中的`Battery`模块搭建等效电路模型,需包含SOC估算模块[^1]。 2. **数据输入接口**:通过`From Workspace`模块导入实时充放电数据。 3. **神经网络集成**: - 使用`MATLAB Function`块调用训练好的神经网络模型。 - 或通过`Neural Network Predictor`(需Deep Learning Toolbox)直接部署网络。 ```matlab % 在MATLAB Function块中调用模型 function soh = predictSOH(voltage, current, time) persistent net; if isempty(net) net = load('trained_network.mat'); end features = extract_features(voltage, current, time); soh = predict(net, features); end ``` 4. **结果输出**:通过`Scope`或`To Workspace`模块显示SOH变化曲线。 #### 4. **联合仿真与验证** - **闭环测试**:将SOH估计结果反馈至电池管理系统(BMS),验证其对充放电策略的影响[^1]。 - **性能指标**: - 实时性:单次推理时间 < 1ms(需通过C代码生成优化)。 - 精度:对比实测SOH与估计值,计算均方根误差(RMSE)。 #### 5. **关键问题与优化** - **过拟合**:添加Dropout层或L2正则化。 - **实时性不足**:使用代码生成(MATLAB Coder)将网络转为C代码。 - **数据同步**:通过`Zero-Order Hold`模块保证采样率一致。 --- ### 仿真框架示意图 $$ \begin{array}{|c|c|c|c|} \hline \text{电池模型} & \rightarrow & \text{数据采集} & \rightarrow & \text{神经网络SOH估计器} \\ \text{(Simscape)} & & \text{(电压/电流传感器)} & & \text{(MATLAB Function)} \\ \hline \end{array} $$ ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

新能源汽车仿真团队

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值