Seq2Seq中Exposure Bias现象的浅析与对策

本文深入探讨Seq2Seq模型中的Exposure Bias问题,分析其成因并提出简单有效的缓解策略,包括随机替换Decoder输入词和对抗训练,实验表明这些方法能提升文本生成模型的性能。
摘要由CSDN通过智能技术生成

©PaperWeekly 原创 · 作者|苏剑林

单位|追一科技

研究方向|NLP、神经网络

前些天笔者写了CRF用过了,不妨再了解下更快的MEMM?,里边提到了 MEMM 的局部归一化和 CRF 的全局归一化的优劣。

同时,笔者联想到了 Seq2Seq 模型,因为 Seq2Seq 模型的典型训练方案 Teacher Forcing 就是一个局部归一化模型,所以它也存在着局部归一化所带来的毛病——也就是我们经常说的“Exposure Bias”。

带着这个想法,笔者继续思考了一翻,将最后的思考结果记录在此文。

▲ 经典的 Seq2Seq 模型图示

本文算是一篇进阶文章,适合对Seq2Seq模型已经有一定的了解、希望进一步提升模型的理解或表现的读者。关于Seq2Seq的入门文章,可以阅读旧作玩转Keras之seq2seq自动生成标题从语言模型到Seq2Seq:Transformer如戏,全靠Mask。

本文的内容大致为:

  1. Exposure Bias 的成因分析及例子;

  2. 简单可行的缓解 Exposure Bias 问题的策略。

Softmax

首先,我们来回顾 Softmax 相关内容。大家都知道,对于向量 ,它的 Softmax 为:

由于 是关于 的严格单调递增函数,所以如果 中的最大者,那么 也是  中的最大者。

对于分类问题,我们所用的 loss 一般是交叉熵,也就是:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值