什么是Exposure Bias

什么是Exposure Bias

Exposure Bias 是在RNN(递归神经网络)中的一种偏差

即 RNN 在 训练(training) 时接受的标签是真实的值(ground truth input),

但测试 (testing) 时却接受自己前一个单元的输出(output)作为本单元的输入(input),这两个setting不一致会导致误差累积error accumulate

误差累积是因为,你在测试的时候,如果前面单元的输出已经是错的,那么你把这个错的输出作为下一单元的输入,那么理所当然就是“一错再错”,造成错误的累积。

<think>好的,我现在需要处理用户关于“曝光偏差”的查询。首先,用户明确想了解曝光偏差的定义,特别是在数据科学和机器学习中的相关概念。我需要确保回答准确,同时结构清晰,符合用户的要求。 首先,我得回忆一下曝光偏差的基本定义。曝光偏差通常指在推荐系统或机器学习模型中,由于训练数据中的样本并非随机曝光,导致模型在预测时出现偏差。比如,用户看到并点击的物品可能只是因为它们被频繁推荐,而不是用户的真实偏好,这会影响模型的训练效果。 接下来,我需要参考用户提供的引用内容。用户提供了五个引用,其中引用[1]、[3]、[4]、[5]都涉及曝光偏差的问题。引用[1]提到使用点击数据训练模型会有曝光偏差,导致高质量但曝光少的物品被忽视。引用[3]提到用填补模型预估未曝光样本的标签,引用[4]介绍了交叉成对排名(CPR)来解决无偏推荐,引用[5]则讨论了对比学习用于去偏候选生成。 我需要将这些引用内容整合到回答中,适当标注引用来源。同时,用户要求回答结构清晰,分步骤解释,所以可能需要分点说明定义、原因、影响及解决方法。 在组织内容时,首先明确曝光偏差的定义,然后解释其在数据科学中的具体表现,比如推荐系统中的点击数据偏差。接着分析产生原因,如数据非随机分布,用户只能看到部分物品。然后讨论影响,如模型无法准确捕捉用户真实兴趣,形成马太效应。最后,介绍解决方法,如逆倾向加权、对比学习、无偏损失函数设计等,并结合引用中的例子,比如CPR和CLRec中的方法。 需要注意用户要求使用中文,所有行内数学公式用$...$,独立公式用$$...$$。例如,在解释逆倾向加权时,可以写成公式:$\text{权重} = \frac{1}{p(x)}$,其中$p(x)$是曝光概率。而交叉成对排名(CPR)的损失函数可能需要作为独立公式展示: $$ \mathcal{L}_{\text{CPR}} = \sum_{(u,i,j) \in \mathcal{D}} \log \sigma(\hat{r}_{ui} - \hat{r}_{uj}) $$ 此外,用户希望生成相关问题,需要根据内容提出几个相关问题,比如曝光偏差的解决方法、实际应用案例、与冷启动问题的关联等。 检查是否有遗漏的引用内容,确保每个引用在回答中被正确引用。例如,引用[5]提到的对比学习和辅助损失函数需要在解决方法部分提及。同时,确保语言自然,避免过于技术化,让用户容易理解。 最后,确认回答结构是否符合要求:先定义,再详细解释,分点说明原因、影响和解决方法,最后相关问题。使用适当的引用标注,如[^1]、[^4]等,保持段落简洁,每部分不宜过长。</think>### 曝光偏差的定义与核心概念 **曝光偏差(Exposure Bias)** 指在机器学习(尤其是推荐系统、信息检索领域)中,由于训练数据仅包含用户已曝光的交互记录(如点击、购买),而未曝光样本的真实反馈(可能感兴趣但未被推荐)被忽略,导致模型对用户偏好的估计出现系统性偏差的现象。在数据科学中,这一问题常表现为“观测数据”与“真实数据分布”之间的不一致性。 #### 具体表现与形成原因 1. **数据非随机性** 训练数据中的样本曝光通常受系统策略(如热门推荐)、用户行为习惯等因素影响,而非随机分布。例如,用户只能看到推荐系统筛选后的物品,未曝光的优质物品无法被观测到。 2. **反馈缺失的误判** 模型容易将未曝光的物品(无点击记录)错误地判定为“用户不感兴趣”,而实际上这些物品可能仅因未被展示而缺乏反馈机会[^3]。 3. **马太效应** 高曝光物品因累积更多点击数据,在后续训练中被进一步强化推荐,形成“强者愈强”的循环[^5]。 --- ### 曝光偏差的影响 | 影响维度 | 具体表现 | |----------------|--------------------------------------------------------------------------| | **模型准确性** | 对长尾物品、新物品的预测能力下降 | | **用户体验** | 推荐多样性降低,用户可能陷入“信息茧房” | | **商业价值** | 优质但低曝光的商品/内容难以被挖掘,导致资源浪费 | --- ### 解决方法与关键技术 1. **逆倾向加权(Inverse Propensity Scoring, IPS)** 为已曝光样本赋予权重$\frac{1}{p(x)}$,其中$p(x)$为物品$x$的曝光概率,以此修正选择偏差[^3]。 2. **对比学习去偏** 如CLRec模型通过对比学习构造正负样本对,强制模型区分曝光与未曝光物品的潜在价值[^5]。 3. **无偏损失函数设计** 交叉成对排名(CPR)方法直接对观察到的交互进行组合采样,通过损失函数调整预测排序: $$ \mathcal{L}_{\text{CPR}} = \sum_{(u,i,j) \in \mathcal{D}} \log \sigma(\hat{r}_{ui} - \hat{r}_{uj}) $$ 其中$\hat{r}_{ui}$表示用户$u$对物品$i$的预测评分,$\sigma$为sigmoid函数。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值