多源迁移学习相关研究回顾

本文回顾了多源迁移学习的研究,重点介绍了MultiSource-TrAdaBoost和TaskTrAdaBoost算法,以及MMD、Fisher Linear Discriminant等域距离度量方法。此外,探讨了DistanceNet-Bandit模型在多源域适应中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

©PaperWeekly 原创 · 作者|张玮玮

学校|东北大学硕士

研究方向|情绪识别

迁移学习中大多数工作在研究单个源域到单个目标域的学习,在实际生活中,应用的时候会碰到很多有标注样本的不是来自单个源域的,有可能来自很多个源域。这些源域数据具有不同的分布,但又具有相关的特征。

下面将通过三篇论文介绍一下多源迁移学习的相关研究。

Boosting for transfer learning with multiple sources

论文标题:Boosting for transfer learning with multiple sources

论文链接:https://ieeexplore.ieee.org/document/5539857

这篇论文是特别经典的多源迁移学习论文,也是在 TrAdaBoost(W. Dai, Q. Yang, 2007)框架基础上提出的算法。相对于 TrAdaBoost 只依赖一个源域,算法很容易受到负迁移的影响。这项工作提出了多源迁移学习的问题,以改进目标分类器的训练,并且提出了 MultiSource-TrAdaBoost 与 TaskTrAdaBoost 算法。

图1(b)与图1(c)表示两种算法的概念图。MultiSource-TrAdaBoost 标识出来自不同源域的哪些训练实例可以与目标训练实例一起重用,以增强目标分类器。TaskTrAdaBoost 使用参数传递方法,提取出构成源任务分类器 模型的参数。

由于源任务是显式描述的,而不是通过带标记的源训练数据隐式描述的。出于这个原因,这个基于参数迁移的方法可以被认为是一个 task-transfer 方法,其中子任务来自各种源任务,可以重复利用,加上目标训练实例,来提高目标分类器。

1.1 MultiSource-TrAdaBoost

首先介绍一下 TrAdaBoost 算法,其主要思想是:给定了某种训练方法,最终分类器是各迭代中分类器的加权和。源域数据与目标域数据合成一个训练集,并将训练集里面的样本赋予一个相同的初始权重,并将权重信息与样本信息组合起来得到一个初始基分类器。

然后计算基分类器 在目标域测试集上误差,此误差与目标域相关程度有关。然后计算基分类器的权重 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值