基于样本平衡策略的多源迁移学习方法及其在乙烯精馏塔质量指标预测的应用

本文提出了一种基于样本平衡策略的多源迁移学习方法,用于乙烯精馏塔质量指标预测。通过融合多个候选预测器减少源域内样本不平衡,并通过误差函数加权组合多个源预测器以利用不同源域的可迁移信息。实验结果表明,该方法在乙烯精馏塔的预测中优于传统机器学习和迁移学习方法。
摘要由CSDN通过智能技术生成

摘要: 基于数据驱动的工业过程建模需要依赖大量的标记良好的数据集,但与目标任务直接相关的标注数据往往是有限的。因此,可以利用与其具有相关性的辅助训练数据进行建模以实现任务迁移。然而,样本的不平衡问题一定程度上影响了迁移学习的性能表现。因此,提出了一种基于样本平衡策略的多源迁移学习方法,首先,对于同一源域内样本,采用最小二乘方法融合多个候选预测器得到单个源预测器,以协同利用域内不同样本包含的可迁移信息。此外,对于不同源域间样本,基于误差函数将多个源预测器加权组合得到多源预测模型。最后以乙烯精馏塔为对象进行案例分析,验证了所提出方法的有效性。

关键词: 多源迁移学习    样本平衡    Tradaboost算法    决策树    乙烯精馏塔    

0 引言

在工业过程中,产品的质量指标预测对于设备的平稳运行、企业的提质增效等方面发挥

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋罗世家技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值