「AI Drive」是由 PaperWeekly 和 biendata 共同发起的学术直播间,旨在帮助更多的青年学者宣传其最新科研成果。我们一直认为,单向地输出知识并不是一个最好的方式,而有效地反馈和交流可能会让知识的传播更加有意义,从而产生更大的价值。
本期 AI Drive,我们邀请到北京大学计算机系博士生王博刘炳言,为大家在线解读其发表于 WWW 2021 的最新工作:PFA: Privacy-preserving Federated Adaptation for Effective Model Personalization。对本期主题感兴趣的小伙伴,6 月 1 日(周二)晚 7 点,我们准时相约 PaperWeekly B 站直播间。
直播信息
近年来,联邦学习成为了学术界和工业界的一个热门领域。基于“数据不出域而模型出域”的基本思想,联邦学习可以在保护隐私的前提下实现分布式合作学习,从而极大地改善模型性能。然而,考虑到用户所处的环境以及喜好不同,联邦后的全局模型并不适合直接部署到设备上去,需要基于用户属性对模型进行个性化调整。
先前的工作主要利用一些模型微调技术对全局模型进一步训练,他们只专注于设备内的个性化调整,忽略了设备的数据资源有限所造成的过拟合和知识不足等问题。本研究基于联邦学习的思想,提出了联邦个性化的概念,通过将合适的设备筛选出来进行设备间的联合调整,从而解决了设备内调整的各种问题,改善了模型的个性化效果。在此过程中,设备内的数据仍保持在本地,我们只传输一些稀疏度表征来实现联邦个性化。
实验结果显示,联邦个性化能够在多个数据场景和多个模型架构上实现比当前方法更优越的性能。同时,传输的稀疏度表征更够抵御现有的模型提取攻击,保证了整个流程的安全性。
论文标题:
PFA: Privacy-preserving Federated Adaptation for Effective Model Personalization
论文链接:
https://arxiv.org/abs/2103.01548
代码链接:
https://github.com/lebyni/PFA
本次分享的具体内容有:
联邦学习的背景介绍
联邦个性化的概念和动机
联邦个性化的相关工作
联邦个性化的挑战
联邦个性化的实现思路
实验与结果分析
总结与未来展望
嘉宾介绍
刘炳言 / 北京大学博士生
刘炳言,北京大学计算机系 17 级直博生,研究方向为智能移动边缘计算,包括联邦学习、模型压缩、迁移学习等。目前已在 WWW/Ubicomp/AAAI/ACM MM 等顶会发表多篇一作论文,曾获 MSRA“明日之星”实习生、华为奖学金、北京大学优秀科研奖等荣誉。
直播地址 & 交流群
本次直播将在 PaperWeekly B 站直播间进行,扫描下方海报二维码或点击阅读原文即可免费观看。线上分享结束后,嘉宾还将在直播交流群内实时 QA,在 PaperWeekly 微信公众号后台回复「AI Drive」,即可获取入群通道。
B 站直播间:
https://live.bilibili.com/14884511
合作伙伴
????
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧
关于PaperWeekly
PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。