​大模型时代的对话分析:阿里最新综述全面解析对话分析的必要性

b94f48c12f96abf040c04a75f5df8cca.gif

f12568008d389b45751677f11e3c43dc.png

背景

随着大语言模型的发展,下一代系统交互朝着基于自然语言对话交互(LanguageUI)高速发展,这将会产生大量的自然语言交互日志,对这些对话日志进行提取、总结、分析、推理,将会带来如等系统优化、客户运营、需求洞察等大量的新应用。

对话分析(Conversation Analysis, CA)旨在从对话(如人人、人机、机器与机器以及多方会话)中识别关键信息,挖掘潜在原因,并制定解决方案以持续推动相关能力的提升,高效促进商业目标(例如提升客户体验、降低投诉率)的达成,简化人工流程、辅助商业洞察与决策过程。

9379493758c872335ca997d871b8d870.png

小模型时代 vs. 大模型时代

小模型只能做到扁平、浅显的分析,如情感、意图分类;大模型由于其丰富的世界知识,其分析可以是多方面的、深层次的,使从 What 到 Why 再到 How 的全方位分析过程成为可能,更接近真实业务需求。但目前对话分析仍然面临严峻挑战:

  1. 定义:学术上没有系统的对话分析技术定义,导致对话分析的目标以及技术点相对分散。

  2. 数据:缺少包含完整对话要素的对话分析数据,导致难以精准建模、评测。

  3. 建模:区别于扁平的文本/文档,对话固有的多轮、语境依赖、隐含模糊性、口语化等性质,导致其需要更深层次的建模。

  4. 应用:大部分研究仍停留在浅层扁平的分析结果,如情感、立场、摘要等,与真实业务需求具有较大差距。

然而,目前并没有对话分析相关的技术性 survey 去整合归纳这些独立的研究,以及讨论大模型时代背景下的对话分析研究重点,从而难以真正形成技术合力来赋能商业应用。

942e4662d64aa6ff2c2fe739cc4b29f0.png

论文标题:

The Imperative of Conversat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值