背景
随着大语言模型的发展,下一代系统交互朝着基于自然语言对话交互(LanguageUI)高速发展,这将会产生大量的自然语言交互日志,对这些对话日志进行提取、总结、分析、推理,将会带来如等系统优化、客户运营、需求洞察等大量的新应用。
对话分析(Conversation Analysis, CA)旨在从对话(如人人、人机、机器与机器以及多方会话)中识别关键信息,挖掘潜在原因,并制定解决方案以持续推动相关能力的提升,高效促进商业目标(例如提升客户体验、降低投诉率)的达成,简化人工流程、辅助商业洞察与决策过程。
小模型时代 vs. 大模型时代
小模型只能做到扁平、浅显的分析,如情感、意图分类;大模型由于其丰富的世界知识,其分析可以是多方面的、深层次的,使从 What 到 Why 再到 How 的全方位分析过程成为可能,更接近真实业务需求。但目前对话分析仍然面临严峻挑战:
定义:学术上没有系统的对话分析技术定义,导致对话分析的目标以及技术点相对分散。
数据:缺少包含完整对话要素的对话分析数据,导致难以精准建模、评测。
建模:区别于扁平的文本/文档,对话固有的多轮、语境依赖、隐含模糊性、口语化等性质,导致其需要更深层次的建模。
应用:大部分研究仍停留在浅层扁平的分析结果,如情感、立场、摘要等,与真实业务需求具有较大差距。
然而,目前并没有对话分析相关的技术性 survey 去整合归纳这些独立的研究,以及讨论大模型时代背景下的对话分析研究重点,从而难以真正形成技术合力来赋能商业应用。
论文标题:
The Imperative of Conversat