NeurIPS 2024 | 基于视觉-语言预训练模型的提示词微调理论分析框架

d318620c2b95d3bc4e8629a28702cb15.gif

de7dfd6e8af37e766a04b86b882a1c4f.png

简介

本文介绍了上海科技大学 YesAI Lab 在 NeurIPS 2024 发表的工作——《Federated Learning from Vision-Language Foundation Models: Theoretical Analysis and Method》。

该研究针对大型视觉-语言模型(如 CLIP)在联邦学习(FL)场景中的提示词微调,构建了理论分析框架。通过引入特征动力学理论,研究者设计了一个理论分析框架,并提出了 PromptFolio(提示词组合)机制,一个在联邦场景中平衡全局与个性化提示词的新方法。

PromptFolio 通过融合本地和全局提示词,既保留了任务相关特征又抑制了任务无关特征。通过严格的理论分析与实验验证,该研究展示了该方法在实际场景中的高效性。

该工作上海科技大学 2023 级博士生潘比康为第一作者,由石野教授和黄伟博士指导完成。

e90f4a1cd016f80b35dab2ac286c349b.png

论文标题:

Federated Learning from Vision-Language Foundation Models: Theoretical Analysis and Method

论文地址:

https://arxiv.org/pdf/2409.19610

代码地址:

https://github.com/PanBikang/PromptFolio

60279f4f9c9607d3e18633c6ccdecaca.png

研究背景

随着视觉-语言基石模型(VLMs)(如 CLIP)的发展,其在联邦学习中的应用变得日益重要。提示词微调因其通信开销小和计算资源需求低,在联邦学习中得到广泛关注。然而,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值