关于「Xception」和「DeepLab V3+」的那些事

本文介绍了Xception网络的原理,从Inception的假设出发,探讨了separable convolution的优化,以及Xception模块的线性堆叠。接着,文章分析了DeepLab V3+的改进,包括使用ASPP模块和encoder-decoder结构,以及在Decoder设计上的考虑。Xception中1x1卷积后的激活层影响也进行了讨论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者丨崔权

学校丨早稻田大学硕士生

研究方向丨深度学习,计算机视觉

知乎专栏丨サイ桑的炼丹炉


前言


最近读了 Xception [1] 和 DeepLab V3+ [2] 的论文,觉得有必要总结一下这个网络里用到的思想,学习的过程不能只是一个学习网络结构这么简单的过程,网络设计背后的思想其实是最重要的但是也是最容易被忽略的一点。


Xception (Extreme Inception) 


卷积层的学习方式


在一层卷积中我们尝试训练的是一个 3-D 的 kernel,kernel 有两个 spatial dimension,H 和 W,一个 channel dimension,也就是 C。


这样一来,一个 kernel 就需要同时学习 spatial correlations 和 cross-channel correlations,我把这里理解为,spatial correlations 学习的是某个特征在空间中的分布,cross-channel correlations 学习的是这些不同特征的组合方式。 


Inception的理念 


首先通过一系列的 1x1 卷积来学习 cross-channel correlations,同时将输入的维度降下来;再通过常规的 3x3 和 5x5 卷积来学习 spatial correlations。这样一来,两个卷积模块分工明确。Inception V3 中的 module 如下图。



Inception的假设


corss-channels correlations 和 spatial correlations 是分开学习的,而不是在某一个操作中共同学习的。 


Inception到Xception的转变


首先考虑一个简版的 Inception module,拿掉所有的 pooling,并且只用一层 3x3 的卷积来提取 spatial correlations,如 Figure2。


1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣灵感,也欢迎你的分享反馈! 【资源说明】 基于DeeplabV3+Xception+Unet实现遥感图像的语义分割python源码+项目说明(毕业设计).zip 基于DeeplabV3+Xception+Unet实现遥感图像的语义分割python源码+项目说明(毕业设计).zip基于DeeplabV3+Xception+Unet实现遥感图像的语义分割python源码+项目说明(毕业设计).zip基于DeeplabV3+Xception+Unet实现遥感图像的语义分割python源码+项目说明(毕业设计).zip基于DeeplabV3+Xception+Unet实现遥感图像的语义分割python源码+项目说明(毕业设计).zip基于DeeplabV3+Xception+Unet实现遥感图像的语义分割python源码+项目说明(毕业设计).zip基于DeeplabV3+Xception+Unet实现遥感图像的语义分割python源码+项目说明(毕业设计).zip基于DeeplabV3+Xception+Unet实现遥感图像的语义分割python源码+项目说明(毕业设计).zip基于DeeplabV3+Xception+Unet实现遥感图像的语义分割python源码+项目说明(毕业设计).zip基于DeeplabV3+Xception+Unet实现遥感图像的语义分割python源码+项目说明(毕业设计).zip基于DeeplabV3+Xception+Unet实现遥感图像的语义分割python源码+项目说明(毕业设计).zip 基于DeeplabV3+Xception+Unet实现遥感图像的语义分割python源码+项目说明(毕业设计).zip 基于DeeplabV3+Xception+Unet实现遥感图像的语义分割python源码+项目说明(毕业设计).zip 基于DeeplabV3+Xception+Unet实现遥感图像的语义分割python源码+项目说明(毕业设计).zip
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值