DeepLab v3+

DeepLab v3+通过Encoder-Decoder架构和解码器恢复边界细节,解决DCNN下采样导致的预测精度下降问题。采用ASPP模块处理多尺度问题,研究ResNet-101替换为Xception模型,提升分割精度和速度。
摘要由CSDN通过智能技术生成

        语义分割主要面临两个问题,第一是物体的多尺度问题,第二是DCNN的多次下采样会造成特征图分辨率变小,导致预测精度降低,边界信息丢失。DeepLab V3设计的ASPP模块较好的解决了第一个问题,而这里要介绍的DeepLabv3+则主要是为了解决第2个问题的。

DeepLab V3+的改进点:

  1. 使用Encoder-Decoder的设计架构。将DeepLab V3作为编码器(利用atrous convolution生成任意维度的特征,并采用ASPP策略),在其后面级联解码器(注意,不再是直接一步恢复到原始大小哦)进而恢复边界细节信息。
  2. backbone的更改。探究了ResNet-101替换成Xception模型的可行性,采用depthwise separable convolution进一步提高分割算法的精度和速度。
     

DeepLab V3+的主要结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋水 墨色

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值