语义分割主要面临两个问题,第一是物体的多尺度问题,第二是DCNN的多次下采样会造成特征图分辨率变小,导致预测精度降低,边界信息丢失。DeepLab V3设计的ASPP模块较好的解决了第一个问题,而这里要介绍的DeepLabv3+则主要是为了解决第2个问题的。
DeepLab V3+的改进点:
- 使用Encoder-Decoder的设计架构。将DeepLab V3作为编码器(利用atrous convolution生成任意维度的特征,并采用ASPP策略),在其后面级联解码器(注意,不再是直接一步恢复到原始大小哦)进而恢复边界细节信息。
- backbone的更改。探究了ResNet-101替换成Xception模型的可行性,采用depthwise separable convolution进一步提高分割算法的精度和速度。