LongAlign: A Recipe for Long Context Alignment of Large Language Models

本文介绍LongAlign,一种针对大型语言模型的长上下文对齐方案。通过Self instruction构建长指令数据集,采用打包和排序分批策略加速微调,并提出损失加权方法。实验显示,LongAlign在长上下文任务中性能提升30%,同时保持处理短任务的能力。LongBench Chat基准用于长上下文交互评估,所有资源已开源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《LongAlign: A Recipe for Long Context Alignment of Large Language Models》的翻译。

LongAlign:大型语言模型的长上下文对齐方法

摘要

扩展大型语言模型以有效处理长上下文需要对类似长度的输入序列进行指令微调。为了解决这个问题,我们提出了LongAlign——一个用于长上下文对齐的指令数据、训练和评估的配方。首先,我们使用Self instruction构建了一个长指令跟随数据集。为了确保数据的多样性,它涵盖了来自各种长上下文来源的广泛任务。其次,我们采用打包和排序分批策略来加快对具有不同长度分布的数据的监督微调。此外,我们开发了一种损失加权方法,以平衡打包训练过程中不同序列的损失。第三,我们介绍了LongBench聊天基准,用于评估长度为10k-100k的查询的指令跟随能力。实验表明,LongAlign在长上下文任务中比现有的LLM配方高出30%,同时也保持了它们处理短通用任务的熟练度。代码、数据和长期模型都是开源的,位于https://github.com/THUDM/LongAlign.

1 引言

2 相关工作

3 LongAlign

### 扩散模型中的水印技术实现 扩散模型是一种基于概率分布建模的技术,在图像生成领域取得了显著成果。然而,随着这些模型的应用日益广泛,保护知识产权的需求也变得尤为重要。为此,研究者提出了多种针对扩散模型的水印嵌入方案。 一种常见的方法是在训练阶段通过修改损失函数来嵌入水印[^1]。具体而言,可以在目标函数中加入额外项以优化特定模式或特征向量作为隐秘标记。这种方法的优点在于不会明显影响模型性能的同时实现了版权标识的功能。 另一种方式则是在推理过程中动态添加个性化标签[^2]。例如当利用预训练好的扩散网络生成新图片时,可以调整某些超参数或者输入条件从而使得输出结果携带预定信息而不破坏视觉质量。 此外还有直接操作权重矩阵本身来进行永久性标注的做法[^3]。此策略涉及对神经元连接强度做细微改动以便于后期验证所有权归属情况而无需改变原有架构设计太多细节部分即可完成整个流程设置工作。 下面给出一段简单的伪代码用于演示如何在Python环境下构建基本框架: ```python import torch from diffusers import StableDiffusionPipeline def apply_watermark(model, watermark_data): """Apply a watermark by modifying the model's parameters.""" with torch.no_grad(): for param in model.parameters(): param.add_(watermark_data * 0.01) pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") # Example of embedding some random noise as watermark data. torch.manual_seed(42) watermark_tensor = torch.randn_like(next(pipeline.text_encoder.parameters())) apply_watermark(pipeline.unet, watermark_tensor) image = pipeline(prompt="A digital art piece").images[0] image.save("./output_with_watermark.png") ``` 上述脚本展示了怎样加载稳定扩散管道并对其内部组件施加自定义扰动达到隐藏签名效果的目的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值