LongAlign: A Recipe for Long Context Alignment of Large Language Models

本文介绍LongAlign,一种针对大型语言模型的长上下文对齐方案。通过Self instruction构建长指令数据集,采用打包和排序分批策略加速微调,并提出损失加权方法。实验显示,LongAlign在长上下文任务中性能提升30%,同时保持处理短任务的能力。LongBench Chat基准用于长上下文交互评估,所有资源已开源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《LongAlign: A Recipe for Long Context Alignment of Large Language Models》的翻译。

LongAlign:大型语言模型的长上下文对齐方法

摘要

扩展大型语言模型以有效处理长上下文需要对类似长度的输入序列进行指令微调。为了解决这个问题,我们提出了LongAlign——一个用于长上下文对齐的指令数据、训练和评估的配方。首先,我们使用Self instruction构建了一个长指令跟随数据集。为了确保数据的多样性,它涵盖了来自各种长上下文来源的广泛任务。其次,我们采用打包和排序分批策略来加快对具有不同长度分布的数据的监督微调。此外,我们开发了一种损失加权方法,以平衡打包训练过程中不同序列的损失。第三,我们介绍了LongBench聊天基准,用于评估长度为10k-100k的查询的指令跟随能力。实验表明,LongAlign在长上下文任务中比现有的LLM配方高出30%,同时也保持了它们处理短通用任务的熟练度。代码、数据和长期模型都是开源的,位于https://github.com/THUDM/LongAlign.

1 引言

2 相关工作

3 LongAlign

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值