Selective Instruction Tuning for Large Language Models via Uncertainty-Aware Self-Reflection

828 篇文章 3 订阅

已下架不支持订阅

14 篇文章 0 订阅
本文提出SelectIT,一种利用大型语言模型(LLM)内在不确定性进行高效指令调优的方法,无需额外资源。SelectIT通过自反射选择高质量的指令数据,改善模型性能,并在新数据集Selective Alpaca上得到验证。实验显示其在不同模型和任务中的有效性。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《SelectIT: Selective Instruction Tuning for Large Language Models via Uncertainty-Aware Self-Reflection》的翻译。

SelectIT:通过不确定性感知的自反射对大型语言模型进行选择性指令调整

摘要

指令调整(IT)对于调整大型语言模型(LLM)以实现以人为中心的交互至关重要。最近的进展表明,仔细选择一小部分高质量的IT数据子集可以显著提高LLM的性能。尽管如此,常见的方法往往依赖于额外的模型或数据集,这增加了成本并限制了广泛采用。在这项工作中,我们提出了一种新的方法,称为SelectIT,它利用了LLM本身的基本能力。具体而言,我们利用LLM中存在的内在不确定性,在不需要额外资源的情况下,更有效地选择高质量的IT数据。此外,我们还介绍了一种新的IT数据集Selective Alpaca,它是通过将SelectIT应用于Alpaca-GPT4数据集而创建的。实证结果表明,使用Selective Alpaca的信息技术可以显著提高模型能力。SelectIT的稳健性也在各种基础模型和特定领域的任务中得到了证实。我们的研究结果表明,更长、计算更密集的IT数据可能是IT的优越来源,为该领域的未来研究提供了有价值的见解。数据、代码和脚本可在https://githu

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值