本文是LLM系列文章,针对《SelectIT: Selective Instruction Tuning for Large Language Models via Uncertainty-Aware Self-Reflection》的翻译。
摘要
指令调整(IT)对于调整大型语言模型(LLM)以实现以人为中心的交互至关重要。最近的进展表明,仔细选择一小部分高质量的IT数据子集可以显著提高LLM的性能。尽管如此,常见的方法往往依赖于额外的模型或数据集,这增加了成本并限制了广泛采用。在这项工作中,我们提出了一种新的方法,称为SelectIT,它利用了LLM本身的基本能力。具体而言,我们利用LLM中存在的内在不确定性,在不需要额外资源的情况下,更有效地选择高质量的IT数据。此外,我们还介绍了一种新的IT数据集Selective Alpaca,它是通过将SelectIT应用于Alpaca-GPT4数据集而创建的。实证结果表明,使用Selective Alpaca的信息技术可以显著提高模型能力。SelectIT的稳健性也在各种基础模型和特定领域的任务中得到了证实。我们的研究结果表明,更长、计算更密集的IT数据可能是IT的优越来源,为该领域的未来研究提供了有价值的见解。数据、代码和脚本可在https://githu