Large Language Models Based Fuzzing Techniques: A Survey

828 篇文章

已下架不支持订阅

本文调查了大型语言模型(LLM)在模糊测试中的应用,分析了LLM如何提升测试效率和自动化水平,发现复杂漏洞。总结了现有方法,探讨未来挑战,为软件安全测试提供新视角。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Large Language Models Based Fuzzing Techniques: A Survey》的翻译。

摘要

在软件发挥关键作用的现代,软件安全和漏洞分析已成为软件开发的关键。模糊测试作为一种高效的软件测试方法,广泛应用于各个领域。此外,大型语言模型(LLM)的快速发展促进了它们在软件测试领域的应用,表现出了显著的性能。考虑到现有的模糊测试技术并不是完全自动化的,软件漏洞也在不断演变,使用基于大型语言模型生成的模糊测试的趋势越来越大。这项调查提供了融合LLM和模糊测试的软件测试方法的系统概述。在本文中,通过总结截至2024年的最先进方法,对LLM、模糊测试和基于LLM生成的模糊测试三个领域的文献进行了统计分析和讨论。我们的调查还调查了LLM生成的模糊测试技术在未来广泛部署和应用的潜力。

1 引言

2 背景

3 基于LLM的模糊测试分析

4 关于未来工作和挑战的讨论

5 结论

在我们的调查中,我们对基于大型语言模型的模糊测试技术进行了深入的回顾和总结,涵盖了人工智能和非人工智能软件领域的广泛应用。我们总结了不同基于LLM的模糊器的框架和原理,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值