Stepwise Self-Consistent Mathematical Reasoning with Large Language Models

828 篇文章 3 订阅

已下架不支持订阅

58 篇文章 1 订阅
7 篇文章 0 订阅
本文提出了一种名为SSC-CoT的算法,用于解决大型语言模型在多步骤数学推理中的挑战。通过中间步骤的交集选择和知识图谱查询,SSC-CoT提高了复杂三角问题解决的有效性,并在TriMaster100数据集和MATH level 5数据集上展现出优越性能。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《Stepwise Self-Consistent Mathematical Reasoning with Large Language Models》的翻译。

摘要

使用大型语言模型进行复杂的数学推理是困难的,主要是由于多步骤推理的复杂性。这一过程的主要挑战包括(1)选择关键的中间结果来推进程序,以及(2)对潜在解决方案的有限探索。为了解决这些问题,我们引入了一种新的算法,即逐步自洽思想链(SSC-CoT)。SSCCoT采用了一种基于各种推理链的交集来选择中间步骤的策略。此外,SSC-CoT使模型能够通过查询包括相关领域知识的知识图谱来发现关键的中间步骤。为了验证SSC CoT,我们提出了一个新的数据集TriMaster100,专门用于复杂的三角问题。该数据集包含100个问题,每个解决方案都被分解为评分的中间步骤,有助于对数学推理过程进行全面评估。在TriMaster100上,SSCCoT将最先进方法的有效性提高了三倍。此外,我们在广泛认可的复杂数学问题数据集MATH level 5上对SSCCoT进行了基准测试,其准确率超过了第二好的方法7.2%。代码和TriMaster100数据集可在以下位置找到:https://github.com/zhao-zilong/ssc

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值