Instructing Large Language Model in Multi-Step Reasoning by Exploring Graph Structure of the Text

828 篇文章 3 订阅

已下架不支持订阅

58 篇文章 1 订阅
本文提出结构引导提示框架,解决大型语言模型在多步骤推理中的挑战。通过将文本转化为图并指导LLM进行任务,提升了其在零样本环境中的推理性能。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《Structure Guided Prompt: Instructing Large Language Model in
Multi

结构引导提示:通过探究文本的图结构指导大型语言模型进行多步骤推理

摘要

尽管大型语言模型(LLM)擅长处理简单的推理任务,但由于一系列因素,当面临更复杂的多步骤推理时,它们经常会遇到困难。首先,自然语言通常包含实体之间的复杂关系,这使得在更长的时间内保持清晰的推理链具有挑战性。其次,丰富的语言多样性意味着相同的实体和关系可以使用不同的术语和结构来表达,这使识别和建立多条信息之间的联系的任务变得复杂。图提供了一种有效的解决方案来表示富含关系信息的数据,并捕获实体之间的长期依赖关系。为了利用图的潜力,我们介绍了结构引导提示,这是一种创新的三阶段任务-认知提示框架,旨在提高零样本环境中LLM的多步骤推理能力。该框架通过LLM将非结构化文本显式地转换为图,并指示他们使用特定于任务的策略来制定响应来导航该图。通过有效地组织信息和引导导航,LLM能够提供更准确和上下文感知的响应。我们的实验表明,该框架显著增强了LLM的推理能力,使其能够在更广泛的自然语言场景中表现出色。

1 引言

2 相关工作

3 框架:结构引导提示

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值