Large Language Models and Causal Inference in Collaboration: A Comprehensive Survey

本文探讨了大型语言模型(LLM)在因果推理中的应用,展示了因果推理如何提升LLM的预测准确性和公平性。因果推理框架不仅改进了LLM的推理能力,而且LLM自身的知识库也为因果关系的发现提供了帮助。该调查全面概述了两者交叉点的研究现状,旨在推动通用人工智能的发展,并在现实世界场景中发挥作用。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《Large Language Models and Causal Inference in Collaboration: A
Comprehensive Survey》的翻译。

摘要

因果推理通过捕捉变量之间的因果关系,在提高自然语言处理(NLP)模型的预测准确性、公平性、稳健性和可解释性方面显示出了潜力。生成性大型语言模型(LLM)的出现对各种NLP领域产生了重大影响,特别是通过其先进的推理能力。本次调查的重点是从因果角度评估和改进LLM,包括以下方面:理解和提高LLM的推理能力,解决LLM中的公平和安全问题,用解释补充LLM,以及处理多模态。同时,LLM强大的推理能力反过来可以帮助因果关系的发现和因果效应的估计,从而为因果推理领域做出贡献。这篇综述从两个角度探讨了因果推理框架和LLM之间的相互作用,强调了它们在进一步发展更先进、更公平的人工智能系统方面的集体潜力。

1 引言

2 大模型的背景

3 因果推理的简单介绍

4 大模型的因果推理

5 因果推理的大模型

6 未来方向

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值