本文是LLM系列文章,针对《Large Language Models and Causal Inference in Collaboration: A
Comprehensive Survey》的翻译。
协作中的大型语言模型与因果推理研究综述
摘要
因果推理通过捕捉变量之间的因果关系,在提高自然语言处理(NLP)模型的预测准确性、公平性、稳健性和可解释性方面显示出了潜力。生成性大型语言模型(LLM)的出现对各种NLP领域产生了重大影响,特别是通过其先进的推理能力。本次调查的重点是从因果角度评估和改进LLM,包括以下方面:理解和提高LLM的推理能力,解决LLM中的公平和安全问题,用解释补充LLM,以及处理多模态。同时,LLM强大的推理能力反过来可以帮助因果关系的发现和因果效应的估计,从而为因果推理领域做出贡献。这篇综述从两个角度探讨了因果推理框架和LLM之间的相互作用,强调了它们在进一步发展更先进、更公平的人工智能系统方面的集体潜力。