STAR: Constraint LoRA with Dynamic Active Learning for Data-Efficient Fine-Tuning of Large Language

本文是LLM系列文章,针对《STAR: Constraint LoRA with Dynamic Active Learning for Data-Efficient Fine-Tuning of Large Language Models》的翻译。

STAR:具有动态主动学习的约束LoRA,用于大型语言模型的数据高效微调

摘要

尽管大型语言模型(LLMs)已经通过提示方法证明了小样本学习的强大能力,但对于复杂的推理任务来说,监督训练仍然是必要的。由于其广泛的参数和内存消耗,已经为LLM提出了参数高效微调(PEFT)方法和内存高效微调方法。然而,大注释数据消耗问题,即数据高效微调的目标,仍未得到探索。一个明显的方法是将PEFT方法与主动学习相结合。然而,实验结果表明,这种组合并非微不足道,并会产生较差的结果。通过探针实验,这种观察可能有两个主要原因:不确定性差距和模型校准不佳。因此,在本文中,我们提出了一种新的方法来有效地整合基于不确定性的主动学习和低秩自适应(LoRA)。具体来说,对于不确定性差距,我们引入了一种动态不确定性度量,该度量结合了主动学习迭代过程中基础模型的不确定性和完整模型的不确定度。对于较差的模型校准,我们在LoRA训练过程中采用正则化方法来防止模型过于自信,并采用蒙特卡洛丢弃机制来增强不确定性估计。实验结果表明,该方法在三个复杂的推理任务上优于现有的基线模型。</

在Android开发中,遇到`Failed to resolve: com.android.support.constraint:constraint-layout:1.0.0-alpha1`或`1.0.0-alpha7`这类错误,通常表示Gradle构建工具无法找到指定版本的Constraint Layout库。Constraint Layout是Android Studio中用于布局对齐和约束的一种库。 要解决这个问题,你可以尝试以下几个步骤: 1. **更新本地库依赖**: - 确保你的`build.gradle`文件中已正确设置了约束布局的依赖。如果是早期版本,可能需要更新到`1.0.0`稳定版或其他更稳定的alpha版本(如`1.1.x`): ```gradle implementation 'com.android.support.constraint:constraintlayout:1.1.3' ``` ^1 2. **清理并重建项目**: - 在终端或命令提示符中,导航到项目目录,运行 `./gradlew clean` 清理缓存,然后执行 `./gradlew build` 重新构建项目。 3. **检查网络连接**: - 如果从远程仓库下载依赖出现问题,可能是网络连接不稳定。确保你的设备能够访问Google Maven仓库。 4. **添加maven仓库** (仅适用于非官方源): - 如果官方仓库无法找到所需的版本,可以尝试添加其他Maven仓库: ```gradle allprojects { repositories { // 添加额外的Maven仓库 maven { url 'https://maven.google.com' } ... } } ``` 5. **检查版本冲突**: - 检查是否有其他库也使用了Constraint Layout,导致版本冲突。确保每个库使用的版本都是兼容的。 如果以上步骤都不能解决问题,你可能需要查阅Android开发者文档或社区论坛寻求更多帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值