Do Large Language Models Speak All Languages Equally? A Comparative Study in Low-Resource Settings

本文是LLM系列文章,针对《Do Large Language Models Speak All Languages Equally? A Comparative Study in Low-Resource Settings》的翻译。

大型语言模型是否平等地使用所有语言?资源匮乏地区的比较研究

摘要

大型语言模型 (LLM) 在自然语言处理 (NLP) 方面引起了极大的兴趣,尤其是它们在资源丰富的语言的各种下游任务中的出色表现。最近的研究强调了 LLM 在低资源语言中的局限性,主要集中在二元分类任务上,而对南亚语言的关注最少。这些限制主要归因于数据集稀缺性、计算成本和特定于低资源语言的研究差距等限制。为了解决这一差距,我们通过将英语翻译成孟加拉语、印地语和乌尔都语来提供情感和仇恨言论任务的数据集,从而促进低资源语言处理的研究。此外,我们使用英语和广泛使用的南亚语言的多个 LLM 全面研究了零样本学习。我们的研究结果表明,GPT-4 的性能始终优于 Llama 2 和 Gemini,与低资源语言相比,英语在各种任务中始终表现出卓越的表现。此外,我们的分析表明,自然语言推理 (NLI) 在评估的任务中表现出最高的性能,GPT-4 表现出卓越的能力。

1 引言

2 相关工作

3 方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值