ROC曲线和AUC指标
1.ROC曲线:
以FRP为横坐标、以TRP为纵坐标作的曲线。
FRP:相当于召回率,就是在真实正例样本中,预测值为正例的个数所占的比例。
TPR:相当于在真实反例样本中,预测值为正例的个数所占的比例
2.AUC指标:
AUC指标和ROC曲线有一定的关系,AUC的就是ROC曲线和X轴相交时的距离。
1.当AUC=0.5时,这说明,分类器是一个随机分类,是不负责任的分类器。分类效果非常差。
2.当AUC=1.0时,这说明,分类器是一个完美的分类器。分类效果极好。
3.当0.5<AUC<1.0时,越接近0.5,分类效果越查,越接近1.0时,分类效果越好。
ROC曲线和AUC指标适用的场景:
当样本指标存在样本不均衡时,会使得精确率、召回率和F1-score的值都非常大。这时,采用ROC曲线和AUC指标进行判断,如果值也比较大,那么恰恰说明,这个分类器是非常好的分类器。但是,如果采用ROC曲线和AUC指标得到的结果非常差的话,这就说明,样本很不均衡,同时分类器是一个非常不负责任的分类器。而且注意的是,ROC曲线和AUC指标只适用于二分类问题。
ROC曲线和AUC指标对应的API
1. ROC曲线fpr, tpr, thresholds = sklearn.metrics.roc_curve(y_true, y_score)
y_true: 真实值,相当于y_test,但是只
分类算法的评估方法(ROC曲线和AUC指标)
最新推荐文章于 2024-04-16 09:16:49 发布