分类算法的评估方法(ROC曲线和AUC指标)

ROC曲线和AUC指标
    1.ROC曲线:
        以FRP为横坐标、以TRP为纵坐标作的曲线。
        FRP:相当于召回率,就是在真实正例样本中,预测值为正例的个数所占的比例。
        TPR:相当于在真实反例样本中,预测值为正例的个数所占的比例
    2.AUC指标:
        AUC指标和ROC曲线有一定的关系,AUC的就是ROC曲线和X轴相交时的距离。
        1.当AUC=0.5时,这说明,分类器是一个随机分类,是不负责任的分类器。分类效果非常差。
        2.当AUC=1.0时,这说明,分类器是一个完美的分类器。分类效果极好。
        3.当0.5<AUC<1.0时,越接近0.5,分类效果越查,越接近1.0时,分类效果越好。
ROC曲线和AUC指标适用的场景:
    当样本指标存在样本不均衡时,会使得精确率、召回率和F1-score的值都非常大。这时,采用ROC曲线和AUC指标进行判断,如果值也比较大,那么恰恰说明,这个分类器是非常好的分类器。但是,如果采用ROC曲线和AUC指标得到的结果非常差的话,这就说明,样本很不均衡,同时分类器是一个非常不负责任的分类器。而且注意的是,ROC曲线和AUC指标只适用于二分类问题。
ROC曲线和AUC指标对应的API
    1. ROC曲线fpr, tpr, thresholds = sklearn.metrics.roc_curve(y_true, y_score)
        y_true: 真实值,相当于y_test,但是只

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值