shaozhenghan的博客

GitHub: https://github.com/shaozhenghan

阅读笔记《CKF滤波算法及其在航天器自主导航中的应用》

《CKF滤波算法及其在航天器自主导航中的应用》是一篇非常好的论文,详细介绍推到了容积卡尔曼滤波(CKF)的原理及其与UKF的对比。 1. 基本滤波问题 其中公式3.1.5 由公式3.1.4根据 3变量的贝叶斯规则 得来:P(x | y, z) = P(y | x, z) * P(x |...

2019-03-02 14:24:19

阅读数 223

评论数 0

读论文:Recognizing Objects in Range Data Using Regional Point Descriptors (3D shape context 形状描述子)

Recognizing Objects in Range Data Using Regional Point Descriptors Andrea Frome 1 , Daniel Huber 2 Ravi Kolluri 1 , Thomas Bülow 1, and Jitendra Mali...

2018-08-09 14:24:24

阅读数 381

评论数 0

C++11 标准特性:指向数组首元素和尾后元素的指针(附归并排序代码)

数组是以指针形式传递给函数的,所以函数一开始并不知道数组的确切尺寸,所以应该提供一些额外的信息。C++中常用方法有两种:1. 显示地传递一个表示数组大小的形参,这也是C语言和C++11标准之前常用的; 2. 在C++11标准中,可以传递指向数组首元素和尾后元素的指针,下面的代码我用了这种方法。这类...

2018-08-06 01:41:46

阅读数 203

评论数 0

3D激光点云物体分类(Object Classification)常用特征梳理与总结

物体分类常用机器学习的方法,这里有句话说的透彻:数据与特征决定了机器学习的上限,而后面的模型/算法/参数只是来逼近这个上限。所以说特征的选择至关重要。这里对基于激光点云的物体分类常见特征做一下归纳整理。方便进一步学习,以及后续论文的写作。 一、对点云特征的要求 理想情况下相同或相似表面上的点的...

2018-08-01 20:43:10

阅读数 4042

评论数 0

主成份分析(PCA)基本原理/步骤及其C++ 实现与优化(结合Eigen矩阵库)

主成份分析是常用的降维方法,其他降维方法还有线性判别分析LDA,二者的区别见:https://www.cnblogs.com/pinard/p/6244265.html   简要说就是: 1.PCA将原始数据投影到方差最大的方向,LDA将数据投影到不同样本的中心点距离最大的方向。 2. PCA...

2018-07-29 20:37:29

阅读数 305

评论数 2

开源框架PointNet 代码详解——/pointnet/sem_seg/model.py

本文介绍用于点云语义分割(Semantic Segmentation in Scenes)的模型文件 /pointnet/sem_seg/model.py。 原论文:PointNet: Deep Learning on Point Sets for 3D Classification and S...

2018-07-18 16:18:16

阅读数 2216

评论数 6

(转)Apollo 2.0 框架及源码分析(三) | 感知模块 | Radar & Fusion

https://zhuanlan.zhihu.com/p/33852112 文章提到了几个点: 一、雷达radar部分: Apollo 2.0 的坐标体系是以Lidar 为基准的。Apollo 可能认为 Velodyne 的位置是最准确的,因此 Camera 的位置标定参考 Velody...

2019-06-09 12:30:30

阅读数 8

评论数 0

(转)相机参数标定(camera calibration)及标定结果如何使用

https://blog.csdn.net/aoulun/article/details/78768570

2019-06-06 14:32:50

阅读数 6

评论数 0

ROS 中 catkin_make到catkin build 的迁移

1. 安装 catkin catkin_make 每次编译都要编译工作空间里面所有的package,比较费时间。如果想指定编译某个package,则需要用 $ catkin build [package name] 命令。 但我在终端里面输入 catkin build,会出现 “catkin:...

2019-05-19 11:01:37

阅读数 11

评论数 0

有关ROS中的TF坐标变换工具包的使用体会

基本上,在使用ROS遇到多个坐标系的时候,都不需要手工计算坐标变换关系,比如各种正弦余弦,四元数,变换矩阵等。只要坐标系之间相对位姿(pose)清楚,就都可以用TF发布坐标变换或坐标系的方法完成。这样甚至连Eigen库都用不着。 怎样判断各个坐标系之间的相对位姿都清楚呢?只要能徒手画出TF树就好...

2019-05-17 20:30:04

阅读数 4

评论数 0

ROS中用rosbag记录的数据仿真时发布TF在RVIZ中遇到“Message removed because it is too old”的问题解决

用rosbag的里程计和激光数据mapping,想在RVIZ中不仅显示occupancy grid map,也显示激光数据,为此需要自己编写TF的broadcaster来发布scan到odom的坐标变换,代码如下 其中scan的坐标系名字(frame_id)叫“laser”,这是因为rosbag...

2019-05-17 16:26:33

阅读数 37

评论数 0

关于 坐标变换 的总结

2019-05-17 11:00:34

阅读数 10

评论数 0

(转)ROS机器人相关坐标系的理解

https://www.jianshu.com/p/bb1f579e37ca

2019-05-01 13:13:19

阅读数 21

评论数 0

(转)ros::spin() 和 ros::spinOnce() 区别及详解

https://www.cnblogs.com/liu-fa/p/5925381.html https://www.cnblogs.com/agvcfy/p/9314682.html

2019-04-12 14:33:38

阅读数 8

评论数 0

(转)局部占据栅格地图到全局栅格地图的融合

一直不大明白局部和全局地图的转换,这篇文章讲的不错 https://blog.csdn.net/zhubaohua_bupt/article/details/77093334

2019-03-25 14:37:19

阅读数 111

评论数 0

读《针对复杂环境的模块化栅格地图构建算法》一文的总结与思考

摘 要:针对煤矿灾害救灾与信息探测机器人的自主导航问题,提出了一种用模块化的 局部栅格地图表示复杂三维环境的地图构建算法。该算法使用TOF 相机对三维环境信息 进行获取,形成三维点云坐标矩阵。通过对坐标阵中每个点进行计算,判断坐标点在局 部栅格地图中的位置,创建新的局部栅格地图,并对栅格单元占据概...

2019-03-24 17:45:21

阅读数 94

评论数 0

基于三维激光雷达的二维占据栅格地图构建-简介

与二维激光雷达只能得到一定高度的平面环境信息相比,三维激光雷达可以得到环境的三维信息。 二维激光雷达一般不会得到地面点,即返回来的点都是障碍物的点,可以直接当做障碍物处理。但三维激光雷达的点中通常包含大量的地面点,不可以直接把返回点的区域当做障碍物。也正因为地面点的原因,三维Lidar的占据栅格...

2019-03-19 10:21:02

阅读数 264

评论数 0

Git 与 GitFlow 教程

https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000 这是廖雪峰的关于git的操作教程,讲的超级好的 https://www.jianshu.com/p/9a76e9aa953...

2019-03-19 08:44:20

阅读数 18

评论数 0

激光雷达数据从极坐标到笛卡尔坐标(结合内、外参)

以Velodyne HDL 64 为例

2019-03-19 08:41:23

阅读数 185

评论数 0

对基于卡尔曼滤波的跟踪算法的一些理解(二)

KF跟踪时常见的运动模型有匀速运动模型(CV)和匀加速运动模型(CA) 常用传感器是Lidar和Radar 其中,Lidar只能测距不能测速,而radar可以测速。 因此,在使用Lidar进行跟踪时,速度可以初始化为0,在预测阶段正常计算,在测量更新阶段使用测量矩阵H 将状态向量中的速度舍弃...

2019-03-03 16:15:48

阅读数 51

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭