大家看到这个题目时,也许不知道这个东西有什么用,为什么要研究这个东西。其实显著性检测是比较有用的东西,因为它可以解决这三方面问题:一是快速的对象检测;二是广告市场,每个广告图片或视频做出来之后是否能突出相应的产品,就可以通过这个方法来检测制作广告是否成功;三是人工智能,要让机器人模拟人去看所有东西,这样才会感觉到人的注意力思维。其实应用的领域还有很多,比如用手机照相时,就可以动态地提示当前照片最显著性的突出部分,以便让人做不同的姿势调整,拍出更好的照片。
《Saliency Detection: A Spectral Residual Approach》是上交高材生侯晓迪在07年的CVPR上发表的一篇论文。这篇文章提出了一个图像视觉显著性的简单计算模型。这篇论文的核心思想如下:
从信息理论角度:信息可分为冗余部分和变化部分。人们的视觉对变化部分更敏感。视觉系统的一个基本原则就是抑制对频繁出现的特征的响应,同时对非常规的特征保持敏感。
作者对图像的log频谱进行了大量研究,发现大量图像的log频谱的平均值是和频率呈现正比关系的,