在OpenCV里实现谱残差的显著性检测

本文介绍了侯晓迪在07年CVPR上提出的基于谱残差的图像显著性检测方法,该方法利用信息理论中的冗余与变化部分概念,通过计算log频谱的差异来提取图像的显著特征。文章详细阐述了算法步骤,包括傅里叶变换、振幅对数、平滑处理、相位重构等,并展示了使用OpenCV实现该算法的实验结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家看到这个题目时,也许不知道这个东西有什么用,为什么要研究这个东西。其实显著性检测是比较有用的东西,因为它可以解决这三方面问题:一是快速的对象检测;二是广告市场,每个广告图片或视频做出来之后是否能突出相应的产品,就可以通过这个方法来检测制作广告是否成功;三是人工智能,要让机器人模拟人去看所有东西,这样才会感觉到人的注意力思维。其实应用的领域还有很多,比如用手机照相时,就可以动态地提示当前照片最显著性的突出部分,以便让人做不同的姿势调整,拍出更好的照片。

 

《Saliency Detection: A Spectral Residual Approach》是上交高材生侯晓迪在07年的CVPR上发表的一篇论文。这篇文章提出了一个图像视觉显著性的简单计算模型。这篇论文的核心思想如下:

从信息理论角度:信息可分为冗余部分和变化部分。人们的视觉对变化部分更敏感。视觉系统的一个基本原则就是抑制对频繁出现的特征的响应,同时对非常规的特征保持敏感。

 

作者对图像的log频谱进行了大量研究,发现大量图像的log频谱的平均值是和频率呈现正比关系的,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

caimouse

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值