还没有搞清楚AI Agent , MCP又火了!

2024年11月,MCP横空出世,以破竹之势重新定义AI与外部世界的交互方式。自Anthropic公司推出MCP以来,MCP便迅速成为科技界万众瞩目的焦点,更在2025年一跃成为AI应用开发的新宠,引领人机协作新风尚!

Anthropic创始团队是GPT系列产品的早期开发者。2020年6月,OpenAI发布第三代大语言模型GPT-3。半年之后,负责OpenAI研发的研究副总裁达里奥·阿莫迪和安全政策副总裁丹妮拉·阿莫迪就决定离职,创立了一家与OpenAI有着不同价值观的人工智能公司——Anthropic。

▲达里奥·阿莫迪和丹妮拉·阿莫迪

Part.1

MCP协议就是AI界的“万能社交达人”

MCP以统一协议打破AI模型与外部工具的交互壁垒,通过标准化接口实现天气查询、数据库调用、智能设备联动等跨平台协同,同时支持上下文持久化存储,让AI对话具备连续记忆能力。

谷歌、OpenAI、阿里、百度等科技巨头已将MCP纳入技术战略,通过它提升AI服务的兼容性、扩展性与智能化水平,开发者可依托其开放生态快速构建插件化应用,企业亦能借此降低AI集成成本,加速业务创新。作为AI交互领域的关键基础设施,MCP正推动技术生态从“碎片化”走向“一体化”,为智能应用的规模化落地提供核心支撑。

2025年4月9日,阿里云 AI 势能大会在北京召开,阿里云百炼上线业界首个全生命周期 MCP 服务,无须用户管理资源、开发部署、工程运维等工作,5分钟即可快速搭建一个连接MCP服务的 Agent(智能体)。

作为云上托管 MCP 服务的最佳运行时,函数计算 FC 为阿里云百炼 MCP 提供弹性调用能力,用户只需提交 npx 命令即可“零代码”将开源 MCP Server 部署到云上,函数计算FC 会准备好计算资源,并以弹性、可靠的方式运行 MCP 服务。

如今,从智能客服到自动驾驶,从智能家居到医疗健康,MCP协议正以前所未有的速度渗透到各个行业领域。以旅行规划为例,借助MCP协议,AI能够实时获取天气、交通、景点信息,为用户量身定制最贴心的旅行方案。在办公场景中,MCP更能助力团队高效协作,实现文档自动生成、数据可视化、会议流程优化等智能化操作,让工作效率飙升!

面对MCP这一新兴而强大的技术,你是否也渴望快速掌握其精髓,成为AI时代的弄潮儿?没有技术背景,又想化身“AI六边形战士”?怎么破局呢?别担心,《MCP极简开发:轻松打造高效智能体》正是你不可多得的学习伙伴!

本书由资深AI开发者倾力打造,力求以“极简”方式让读者快速了解MCP的基本概念、核心技术、平台工具,并辅以30余个应用案例,帮助读者轻松打造个性化Agent。

▼点击下方,即可购书

Part.2

为什么选择MCP?

标准化交互,开发更轻松。MCP定义了统一的交互规则,就像给AI模型和外部工具提供了一套“通用语言”。无论你是开发AI助手、智能客服还是自动化工具,都不需要再为每个工具定制开发接口,从而大大降低了开发门槛和成本。

效率翻倍,迭代更迅速。传统的AI开发往往需要在工具集成和调试上花费大量时间。而MCP通过标准化交互,让你能够快速集成各种工具和数据,开发周期缩短50%以上,助力你更快地迭代产品,抢占市场先机。

生态共赢,创新无极限。MCP的开放性促进了AI工具生态的繁荣。越来越多的工具和数据源开始支持MCP协议,这意味着你可以轻松调用各种资源,激发无限创新可能,构建更加丰富、强大的AI应用。

Part.3

为什么选择这本书?

核心组件全解析。本书深入剖析MCP Host、MCP Client、MCP Server三大核心组件,让你了解它们如何协同工作来打造高效开发流水线。从上下文感知到意图识别,从请求管理到响应处理,每一个环节都清晰明了。

通信机制大揭秘。本书详细讲解MCP支持的多种通信方式,如STDIO、SSE,以及基于JSON-RPC2.0的消息格式。你将了解到如何构建高效、可靠的通信链路,确保AI模型与外部工具之间的顺畅交互。

Part.4

IDE开发神器、生活类智能体、个人效率类智能体,实战案例,即学即用。

在Cline中集成GitHub MCP,实现仓库的高效查询与管理;集成Figma MCP,快速完成UI/UX原型设计;在Trae中配置ArXiv MCP,实现论文的搜索、读取和下载。MCP将协助你提升IDE开发效率,让你事半功倍。

利用高德MCP Server和Cursor构建旅行规划智能体,为你提供详细的旅行规划,包括天气预报、行程安排等;构建约会助手智能体,根据你输入的两个地点,推荐周边适合约会的地方;构建每日天气推送智能体,根据你的地理位置,提供实时天气信息、穿搭建议和出行建议。MCP将成为你的生活智能“催化剂”,让你拥有更加智能、便捷的生活。

构建网页生成部署智能体,通过EdgeOne Pages MCP服务,实现网页的一站式生成和部署;构建数据图表生成智能体,利用QuickChart MCP服务,快速生成专业图表,支持数据可视化;

构建结构化思考智能体,通过Sequential Thinking MCP服务,促进复杂问题的结构化思考和解决;构建自动配图智能体,利用Wanx文生图MCP服务,将文本描述转换为相应的图像,提升视觉内容创作效率。MCP将成为你职场的得力助手,助你构建效率飙升的利器。

Part.5

登上AI技术快车,MCP就是你的“头等舱票”!

求职时,在简历上甩出“精通MCP”,直接让你在一众竞争者中脱颖而出;技术讨论会上,打开你的MCP专题PPT,立刻就能在技术圈抢占C位!选择《MCP极简开发:轻松打造高效智能体》,解锁智能体开发全链路能力。本书有以下六大特色:

循序渐进:从基础概念到实战应用,通过案例对比直观展示 MCP 的优势,让读者快速了解 MCP 的价值。

原理清晰:详细剖析 MCP 的核心架构、通信机制和工作原理,并配合大量图示,使复杂概念变得简单易懂。

实践导向:提供完整的开发环境搭建指南,手把手教你构建 MCP Server 和 MCP Client。

案例丰富:涵盖 IDE 集成、生活服务、个人效率和办公协作等多个应用场景中的实战案例,具有极强的实用性。

资源完备:整合优质的 MCP 相关资源,提供案例代码、PPT与讲解视频,助力读者持续学习。

服务支持:通过 QQ 学习群(826753316)、公众号(可学 AI)等多个渠道提供服务支持,确保学习过程畅通无阻。

立即下单,开启你的智能体开发之旅吧!

### RAG Agent 实现与 MCP 框架组件 RAG(Retrieval-Augmented Generation)是一种结合检索增强生成的方法,能够有效解决传统大语言模型的知识时效性和准确性问题[^3]。通过引入外部知识库或文档作为输入的一部分,RAG使得模型能够在推理过程中动态获取最新信息。 在实际实现中,可以采用如下方式来设计基于MCP(Multi-Component Pipeline)框架的RAG Agent: #### 架构概述 1. **检索模块** 使用向量数据库或其他高效检索引擎,在大量结构化或非结构化的数据集中快速找到最相关的片段。这些片段随后被传递给后续的大语言模型用于上下文理解[^4]。 2. **Agent 控制器** 这部分负责任务分解和工具调用逻辑的设计。具体来说,它会依据用户的请求制定计划,并决定何时以及如何利用其他辅助功能(比如特定API接口或者预训练好的子模型)。例如,“订票”这一操作可能涉及多个阶段——查询航班时间表、比较价格选项直至最终确认预订细节[^2]。 3. **记忆机制** 记忆单元用来保存之前的交流记录以便维持长时间跨度内的对话一致性。这对于某些需要反复澄清需求的应用场合尤为重要,如客户服务聊天机器人等场景下保持良好的用户体验至关重要[^4]。 #### 技术栈推荐 为了搭建这样一个复杂的系统架构,可以选择一些流行的开源技术和平台来进行集成开发工作: - **LangChain**: 提供了一套完整的链路支持从原始资料提取到最终响应呈现整个过程中的各个环节衔接顺畅; - **FAISS/ChromaDB**: 高效矢量化存储方案帮助加速近似最近邻搜索速度从而提升整体性能表现; - **DeepSpeed/Megatron-LM**: 如果考虑自行微调基础LLMs,则上述两个项目提供了优化后的分布式训练算法降低资源消耗成本的同时加快收敛速率。 下面给出一段简单的Python伪代码展示基本思路: ```python from langchain import PromptTemplate, LLMChain import faiss # 或 chromadb 等替代品 class RagBasedAgent: def __init__(self, llm_model, db_index_path): self.llm = llm_model self.db_index = faiss.read_index(db_index_path) def query_relevant_docs(self, question): vectorized_question = ... # 将问题转化为嵌入表示形式 distances, indices = self.db_index.search(vectorized_question, k=5) relevant_documents = [...] # 根据索引取出对应文档内容 return "\n".join(relevant_documents) def generate_answer(self, user_input): context_info = self.query_relevant_docs(user_input) template = """Given the following extracted parts of a long document and a question, provide an accurate answer. Context Information:\n{context}\n\nQuestion:{question}""" prompt_template = PromptTemplate(template=template, input_variables=["context", "question"]) chain = LLMChain(prompt=prompt_template, llm=self.llm) response = chain.run({"context": context_info, "question": user_input}) return response if __name__ == "__main__": model_instance = load_pretrained_llm() # 加载已有的大型语言模型实例 agent = RagBasedAgent(model_instance, "./data/faiss_index") while True: inp = input("Ask me anything:") ans = agent.generate_answer(inp) print(f"Answer is {ans}") ``` 问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值