G. Polya and “How to Solve It!”

G.Polya是美国著名的数学教育家,他的著作< > 风靡全球,对现代的数学教育产生了很大的影响.

在我上高中的时候,我的数学老师曾经多次提到过该书的所介绍的方法,使我在数学解题方面受益匪浅并对我以后的工作产生了很大的潜移默化的影响.

如果大家对这本书感兴趣,可以到网上搜搜,有不少相关的资料.这本书虽然介绍的是如何解数学题,但是他提出的解决问题的思想方法其实对解决我们工作和其他方面的问题都是很有帮助的.

下面是G.Polya在这本书中总结的一个解决问题的框架:

G. Polya and “How to Solve It!”

An overall framework for problem solving was described by G. Polya in a book called “How to Solve It!” (see supplementary references).

Although Polya’s focus was on solving math problems, the strategies are much

more general and are broadly applicable. Inductive reasoning is the basis of most of the creative processes in the “real world”. Physics in general and mechanics in particular provides an ideal laboratory for building skill in inductive reasoning and discovery.

Here is an outline of Polya’s framework:

1. Understand the Problem [Identify the goal ]

The first step is to read the problem and make sure that you understand it clearly. Ask yourself the following questions:

What are the unknowns?

• What are the given quantities?

• What are the given conditions?

• Are there any constraints?

For many problems it is useful to

• draw a diagram and identify the given and required quantities on the diagram.

Usually it is necessary to

• introduce suitable notation

In choosing symbols for the unknown quantities we often use letters such as a, b, c, x, and y, but in most cases it helps to use initials as suggestive symbols, for instance, V for volume or t for time.

2. Devise a Plan

Find a connection between the given information and the unknown that will enable you to calculate the unknown. It often helps you to ask yourself explicitly: ”How can I relate the given to the unknown?”

If you do not see a connection immediately, the following ideas may be helpful in devising a plan.

• Establish subgoals (divide into subproblems)

In a complex problem it is often useful to set subgoals. If we can first reach these subgoals, then we may be able to build on them to reach our final goal.

• Try to recognize something familiar

Relate the given situation to previous knowledge. Look at the unknown and try to recall a more familiar problem that has a similar unknown or involves similar principles.

• Try to recognize patterns

Some problems are solved by recognizing that some kind of pattern is occurring. The pattern could be geometric, or numerical, or algebraic. If you can see regularity or repetition in a problem, you might be able to guess what the continuing pattern is and then prove it. [This is one reason you need to do lots of problems, so that you develop a base of patterns!]

• Use analogy

Try to think of an analogous problem, that is, a similar problem, a related problem, but one that is easier than the original problem. If you can solve the similar, simpler problem, then it might give you the clues you need to solve the original, more difficult problem. For instance, if the problem is in three-dimensional geometry, you could look for a similar problem in two-dimensional geometry. Or if the problem you start with is a general one, you could first try a special case. [One must do many problems to build a database of analogies!]

• Introduce something extra

It may sometimes be necessary to introduce something new, an auxiliary aid, to help make the connection between the given and the unknown. For instance, in a problem where a diagram is useful the auziliary aid could be a new line drawn in a diagram. In a more algebraic problem it could be a new unknown that is related to the original unknown.

• Take cases

We may sometimes have to split a problem into several cases and give a different solution for each of the cases. For instance, we often have to use this strategy in dealing with absolute value.

• Work backward (assume the answer)

It is often useful to imagine that your problem is solved and work backward, step by step, until you arrive at the given data. Then you may be able to reverse your steps and thereby construct a solution to the original problem. This procedure is commonly used in solving equations. For instance, in solving the equation 3x−5 = 7, we suppose that x is a number that satisfies 3x−5 = 7 and work backward. We add 5 to each side of the equation and then divide each side by 3 to get x = 4. Since each of these steps can be reversed, we have solved the problem.

• Indirect reasoning

Sometimes it is appropriate to attack a problem indirectly. In using proof by contradiction to prove that P implies Q we assume that P is true and Q is false and try to see why this cannot happen.

3. Carry out the Plan

In step 2 a plan was devised. In carrying out that plan we have to check each stage of the plan and write the details that prove that each stage is correct. A string of equations is not enough!

4. Look Back

Be critical of your result; look for flaws in your solutions (e.g., inconsistencies or ambiguities or incorrect steps). Be your own toughest critic! Can you check the result? Checklist of checks:

• Is there an alternate method that can yield at least a partial answer?

• Try the same approach for some similar but simpler problem.

• Check units (always, always, always! ).

• If there is a numerical answer, is the order of magnitude correct or reasonable?

• Trends. Does the answer vary as you expect if you vary one or more parameters?

For example,

if gravity is involved, does the answer change as expected if you vary g?

• Check limiting cases where the answer is easy or known. Take the limit as variables or parameters reach certain values. For example, take a mass to be zero or infinite.

• Check special cases where the answer is easy or known. This might be a special angle (0 or 45 or 90 degrees) or the case when all masses are set equal to each other.

• Use symmetry. Does your answer reflect any symmetries of the physical situation?

• If possible, do a simple experiment to see if your answer makes sense.

We will examine potential strategies as we solve problems. The emphasis here is on being conscious of our problem-solving strategies and on constructing a solution that reflects the steps outlined above.

A perennial bestseller by eminent mathematician G. Polya, "How to Solve It" will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be "reasoned" out - from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft - indeed, brilliant - instructions on stripping away irrelevancies and going straight to the heart of the problem. In this best-selling classic, George Polya revealed how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be "reasoned" out - from building a bridge to winning a game of anagrams.Generations of readers have relished Polya's deft instructions on stripping away irrelevancies and going straight to the heart of a problem. "How to Solve It" popularized heuristics, the art and science of discovery and invention. It has been in print continuously since 1945 and has been translated into twenty-three different languages. Polya was one of the most influential mathematicians of the twentieth century. He made important contributions to a great variety of mathematical research: from complex analysis to mathematical physics, number theory, probability, geometry, astronomy, and combinatorics. He was also an extraordinary teacher - he taught until he was ninety - and maintained a strong interest in pedagogical matters throughout his long career.In addition to "How to Solve It", he published a two-volume work on the topic of problem solving, "Mathematics of Plausible Reasoning", also with Princeton. Polya is one of the most frequently quoted mathematicians, and the following statements from "How to Solve It" make clear why: "My method to overcome a difficulty is to go around it." "Geometry is the science of correct reasoning on incorrect figures." "In order to solve this differential equa
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值