这一篇文章, 从理解的角度来阐述相关的含义。
我们知道在时间序列分析中,常用的模型有ARMA、AR和MA模型。
建立模型的前期, 需要确定阶数,例如AR(P)模型的参数P。
这时就需要根据时间序列的ACF和PACF函数值来确定, 然后建立模型, 最后需要检验模型的效果。
注意:模型的ACF是根据定义求值然后建立ACF图,再确定阶数。
ACF是自相关系函数的简称
公式1:
公式1,是自相关系数的定义,表示间隔为K的时间序列之间的相关系数值。
公式2:
公式2是AR(K)模型推导的自相关系数,是需要用数据进行求近似值。
公式2前题是平稳性时间序列,可以推导出公式2
PACF是偏自相关函数
公式1:
实际是与在扣除

本文介绍了ACF(自相关系函数)和PACF(偏自相关函数)在时间序列分析中的作用,特别是在确定ARIMA模型阶数时的重要性。ACF用于AR模型,其拖尾性可能表明随机事件影响;而PACF的截尾性则指示AR模型的阶数,两者结合帮助识别最佳模型配置。
最低0.47元/天 解锁文章
2157

被折叠的 条评论
为什么被折叠?



