MA(q)的参数估计——公式推导

M A ( q ) MA(q) MA(q)的参数估计——公式推导


M A ( q ) MA(q) MA(q)模型为 y t = θ 0 + θ 1 ϵ t − 1 + … + θ q ϵ t − q + ϵ t y_t=\theta_0+\theta_1\epsilon_{t-1}+\ldots+\theta_q\epsilon_{t-q}+\epsilon_t yt=θ0+θ1ϵt1++θqϵtq+ϵt,其中 ϵ t ∼ i . i . d . N ( 0 , σ ϵ 2 ) \epsilon_t\mathop{\sim}\limits^{i.i.d.}N(0,\sigma_\epsilon^2) ϵti.i.d.N(0,σϵ2)

极大似然估计


假设观测数据集为 { y 1 , … , y T } \{y_1,\ldots,y_T\} {y1,,yT},令 θ = ( θ 0 , … , θ q , σ ϵ 2 ) ′ \theta=(\theta_0,\ldots,\theta_q,\sigma_\epsilon^2)^\prime θ=(θ0,,θq,σϵ2) y = ( y 1 , … , y T ) ′ y=(y_1,\ldots,y_T)^\prime y=(y1,,yT)
似然函数为:
L ( θ ) = f θ ( y 1 , … , y T ) L(\theta)=f_\theta(y_1,\ldots,y_T) L(θ)=fθ(y1,,yT)
其中, ( y 1 , … , y T ) ∼ N ( μ , Σ ) (y_1,\ldots,y_T)\sim N(\mu,\Sigma) (y1,,yT)N(μ,Σ)

在精确似然估计中,我们假设 ( y 1 , … , y T ) (y_1,\ldots,y_T) (y1,,yT)服从多元正态分布
μ = ( E y 1 , … , E y T ) ′ = ( θ 0 , … , θ 0 ) ′ \mu=(Ey_1,\ldots,Ey_T)^\prime=(\theta_0,\ldots,\theta_0)^\prime μ=(Ey1,,EyT)=(θ0,,θ0)
Σ = ( C o v ( y 1 , y 1 ) C o v ( y 1 , y 2 ) … C o v ( y 1 , y q + 1 ) C o v ( y 1 , y q + 2 ) … C o v ( y 1 , y T − 1 ) C o v ( y 1 , y T ) C o v ( y 2 , y 1 ) C o v ( y 2 , y 2 ) … C o v ( y 2 , y q + 1 ) C o v ( y 2 , y q + 2 ) … C o v ( y 2 , y T − 1 ) C o v ( y 2 , y T ) ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ C o v ( y q + 1 , y 1 ) C o v ( y q + 1 , y 2 ) … C o v ( y q + 1 , y q + 1 ) C o v ( y q + 1 , y q + 2 ) … C o v ( y q + 1 , y T − 1 ) C o v ( y q + 1 , y T ) C o v ( y q + 2 , y 1 ) C o v ( y q + 2 , y 2 ) … C o v ( y q + 2 , y q + 1 ) C o v ( y q + 2 , y q + 2 ) … C o v ( y q + 2 , y T − 1 ) C o v ( y q + 2 , y T ) ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ C o v ( y T − 1 , y 1 ) C o v ( y T − 1 , y 2 ) … C o v ( y T − 1 , y q + 1 ) C o v ( y T − 1 , y q + 2 ) … C o v ( y T − 1 , y T − 1 ) C o v ( y T − 1 , y T ) C o v ( y T , y 1 ) C o v ( y T , y 2 ) … C o v ( y T , y q + 1 ) C o v ( y T , y q + 2 ) … C o v ( y T , y T − 1 ) C o v ( y T , y T ) ) = ( ( 1 + ∑ t = 1 q θ t 2 ) σ ϵ 2 θ 1 σ ϵ 2 + ∑ t = 1 q − 1 θ t θ t + 1 σ ϵ 2 … θ p σ ϵ 2 0 … 0 0 θ 1 σ ϵ 2 + ∑ t = 1 q − 1 θ t θ t + 1 σ ϵ 2 ( 1 + ∑ t = 1 q θ t 2 ) σ ϵ 2 … θ q − 1 σ ϵ 2 + θ 1 θ 2 σ ϵ 2 θ p σ ϵ 2 … 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ θ p σ ϵ 2 θ q − 1 σ ϵ 2 + θ 1 θ 2 σ ϵ 2 … ( 1 + ∑ t = 1 q θ t 2 ) σ ϵ 2 θ 1 σ ϵ 2 + ∑ t = 1 q − 1 θ t θ t + 1 σ ϵ 2 … C o v ( y q + 1 , y T − 1 ) C o v ( y q + 1 , y T ) 0 θ p σ ϵ 2 … θ 1 σ ϵ 2 + ∑ t = 1 q − 1 θ t θ t + 1 σ ϵ 2 ( 1 + ∑ t = 1 q θ t 2 ) σ ϵ 2 … C o v ( y q + 2 , y T − 1 ) C o v ( y q + 2 , y T ) ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 … C o v ( y T − 1 , y q + 1 ) C o v ( y T − 1 , y q + 2 ) … ( 1 + ∑ t = 1 q θ t 2 ) σ ϵ 2 θ 1 σ ϵ 2 + ∑ t = 1 q − 1 θ t θ t + 1 σ ϵ 2 0 0 … C o v ( y T , y q + 1 ) C o v ( y T , y q + 2 ) … θ 1 σ ϵ 2 + ∑ t = 1 q − 1 θ t θ t + 1 σ ϵ 2 ( 1 + ∑ t = 1 q θ t 2 ) σ ϵ 2 ) \begin{align*} \Sigma&=\left(\begin{matrix} Cov(y_1,y_1)&Cov(y_1,y_2)&\ldots&Cov(y_1,y_{q+1})&Cov(y_1,y_{q+2})&\ldots&Cov(y_1,y_{T-1})&Cov(y_1,y_T) \\ Cov(y_2,y_1)&Cov(y_2,y_2)&\ldots&Cov(y_2,y_{q+1})&Cov(y_2,y_{q+2})&\ldots&Cov(y_2,y_{T-1})&Cov(y_2,y_T) \\ \vdots&\vdots&&\vdots&\vdots&&\vdots&\vdots \\ Cov(y_{q+1},y_1)&Cov(y_{q+1},y_2)&\ldots&Cov(y_{q+1},y_{q+1})&Cov(y_{q+1},y_{q+2})&\ldots&Cov(y_{q+1},y_{T-1})&Cov(y_{q+1},y_T) \\ Cov(y_{q+2},y_1)&Cov(y_{q+2},y_2)&\ldots&Cov(y_{q+2},y_{q+1})&Cov(y_{q+2},y_{q+2})&\ldots&Cov(y_{q+2},y_{T-1})&Cov(y_{q+2},y_T) \\ \vdots&\vdots&&\vdots&\vdots&&\vdots&\vdots \\ Cov(y_{T-1},y_1)&Cov(y_{T-1},y_2)&\ldots&Cov(y_{T-1},y_{q+1})&Cov(y_{T-1},y_{q+2})&\ldots&Cov(y_{T-1},y_{T-1})&Cov(y_{T-1},y_T) \\Cov(y_T,y_1)&Cov(y_T,y_2)&\ldots&Cov(y_T,y_{q+1})&Cov(y_T,y_{q+2})&\ldots&Cov(y_T,y_{T-1})&Cov(y_T,y_T) \end{matrix}\right) \\ \\&=\left(\begin{matrix} (1+\sum\limits_{t=1}^{q}\theta_t^2)\sigma_\epsilon^2&\theta_1\sigma_\epsilon^2+\sum\limits_{t=1}^{q-1}\theta_t\theta_{t+1}\sigma_\epsilon^2&\ldots&\theta_p\sigma_\epsilon^2&0&\ldots&0&0\\ \theta_1\sigma_\epsilon^2+\sum\limits_{t=1}^{q-1}\theta_t\theta_{t+1}\sigma_\epsilon^2&(1+\sum\limits_{t=1}^{q}\theta_t^2)\sigma_\epsilon^2&\ldots&\theta_{q-1}\sigma_\epsilon^2+\theta_1\theta_2\sigma_\epsilon^2&\theta_p\sigma_\epsilon^2&\ldots&0&0 \\ \vdots&\vdots&&\vdots&\vdots&&\vdots&\vdots \\ \theta_p\sigma_\epsilon^2&\theta_{q-1}\sigma_\epsilon^2+\theta_1\theta_2\sigma_\epsilon^2&\ldots&(1+\sum\limits_{t=1}^{q}\theta_t^2)\sigma_\epsilon^2&\theta_1\sigma_\epsilon^2+\sum\limits_{t=1}^{q-1}\theta_t\theta_{t+1}\sigma_\epsilon^2&\ldots&Cov(y_{q+1},y_{T-1})&Cov(y_{q+1},y_T) \\ 0&\theta_p\sigma_\epsilon^2&\ldots&\theta_1\sigma_\epsilon^2+\sum\limits_{t=1}^{q-1}\theta_t\theta_{t+1}\sigma_\epsilon^2&(1+\sum\limits_{t=1}^{q}\theta_t^2)\sigma_\epsilon^2&\ldots&Cov(y_{q+2},y_{T-1})&Cov(y_{q+2},y_T) \\ \vdots&\vdots&&\vdots&\vdots&&\vdots&\vdots \\ 0&0&\ldots&Cov(y_{T-1},y_{q+1})&Cov(y_{T-1},y_{q+2})&\ldots&(1+\sum\limits_{t=1}^{q}\theta_t^2)\sigma_\epsilon^2&\theta_1\sigma_\epsilon^2+\sum\limits_{t=1}^{q-1}\theta_t\theta_{t+1}\sigma_\epsilon^2\\0&0&\ldots&Cov(y_T,y_{q+1})&Cov(y_T,y_{q+2})&\ldots&\theta_1\sigma_\epsilon^2+\sum\limits_{t=1}^{q-1}\theta_t\theta_{t+1}\sigma_\epsilon^2&(1+\sum\limits_{t=1}^{q}\theta_t^2)\sigma_\epsilon^2 \end{matrix}\right) \end{align*} Σ= Cov(y1,y1)Cov(y2,y1)Cov(yq+1,y1)Cov(yq+2,y1)Cov(yT1,y1)Cov(yT,y1)Cov(y1,y2)Cov(y2,y2)Cov(yq+1,y2)Cov(yq+2,y2)Cov(yT1,y2)Cov(yT,y2)Cov(y1,yq+1)Cov(y2,yq+1)Cov(yq+1,yq+1)Cov(yq+2,yq+1)Cov(yT1,yq+1)Cov(yT,yq+1)Cov(y1,yq+2)Cov(y2,yq+2)Cov(yq+1,yq+2)Cov(yq+2,yq+2)Cov(yT1,yq+2)Cov(yT,yq+2)Cov(y1,yT1)Cov(y2,yT1)Cov(yq+1,yT1)Cov(yq+2,yT1)Cov(yT1,yT1)Cov(yT,yT1)Cov(y1,yT)Cov(y2,yT)Cov(yq+1,yT)Cov(yq+2,yT)Cov(yT1,yT)Cov(yT,yT) = (1+t=1qθt2)σϵ2θ1σϵ2+t=1q1θtθt+1σϵ2θpσϵ2000θ1σϵ2+t=1q1θtθt+1σϵ2(1+t=1qθt2)σϵ2θq1σϵ2+θ1θ2σϵ2θpσϵ200θpσϵ2θq1σϵ2+θ1θ2σϵ2(1+t=1qθt2)σϵ2θ1σϵ2+t=1q1θtθt+1σϵ2Cov(yT1,yq+1)Cov(yT,yq+1)0θpσϵ2θ1σϵ2+t=1q1θtθt+1σϵ2(1+t=1qθt2)σϵ2Cov(yT1,yq+2)Cov(yT,yq+2)00Cov(yq+1,yT1)Cov(yq+2,yT1)(1+t=1qθt2)σϵ2θ1σϵ2+t=1q1θtθt+1σϵ200Cov(yq+1,yT)Cov(yq+2,yT)θ1σϵ2+t=1q1θtθt+1σϵ2(1+t=1qθt2)σϵ2

于是,似然函数便可借由多元正态密度函数推导如下:
L ( θ ) = 1 2 π ∣ Σ ∣ e x p ( − 1 2 ( y − μ ) ′ Σ − 1 ( y − μ ) ) L(\theta)=\dfrac{1}{\sqrt{2\pi|\Sigma|}}exp\left( -\dfrac{1}{2}(y-\mu)^\prime\Sigma^{-1}(y-\mu) \right) L(θ)=2π∣Σ∣ 1exp(21(yμ)Σ1(yμ))

条件极大似然估计


在给定 { ϵ 1 − q , … , ϵ 0 } \{\epsilon_{1-q},\ldots,\epsilon_0\} {ϵ1q,,ϵ0}的条件下,我们可以迭代计算得到 { ϵ 1 , … , ϵ T − 1 } \{\epsilon_1,\ldots,\epsilon_{T-1}\} {ϵ1,,ϵT1},因此:
L ( θ ) = f θ ( y 1 , … , y T ∣ ϵ 1 − q , … , ϵ 0 ) = f θ ( y 1 , … , y T ∣ ϵ 1 − q , … , ϵ T − 1 ) = ∏ t = 2 T f θ ( y t ∣ y t − 1 , … , y 1 , ϵ 1 − q , … , ϵ T − 1 ) f θ ( y 1 ∣ ϵ 1 − q , … , ϵ T − 1 ) = ∏ t = 1 T f θ ( y t ∣ ϵ t − 1 , … , ϵ t − q ) \begin{align*}L(\theta)&=f_\theta(y_1,\ldots,y_T|\epsilon_{1-q},\ldots,\epsilon_{0}) \\ &=f_\theta(y_1,\ldots,y_T|\epsilon_{1-q},\ldots,\epsilon_{T-1}) \\ &=\prod\limits_{t=2}^Tf_\theta(y_t|y_{t-1},\ldots,y_1,\epsilon_{1-q},\ldots,\epsilon_{T-1})f_\theta(y_1|\epsilon_{1-q},\ldots,\epsilon_{T-1}) \\ &=\prod\limits_{t=1}^Tf_\theta(y_t|\epsilon_{t-1},\ldots,\epsilon_{t-q}) \end{align*} L(θ)=fθ(y1,,yTϵ1q,,ϵ0)=fθ(y1,,yTϵ1q,,ϵT1)=t=2Tfθ(ytyt1,,y1,ϵ1q,,ϵT1)fθ(y1ϵ1q,,ϵT1)=t=1Tfθ(ytϵt1,,ϵtq)其中, y t ∣ ϵ t − 1 , … , ϵ t − q ∼ N ( θ 0 + ∑ i = 1 q θ i ϵ t − i , σ ϵ 2 ) y_t|\epsilon_{t-1},\ldots,\epsilon_{t-q}\sim N(\theta_0+\sum\limits_{i=1}^q\theta_i\epsilon_{t-i},\sigma_\epsilon^2) ytϵt1,,ϵtqN(θ0+i=1qθiϵti,σϵ2)
故似然函数为:
L ( θ ) = ∏ t = 1 T 1 2 π σ ϵ 2 e x p ( − ( y t − θ 0 − ∑ i = 1 q θ i ϵ t − i ) 2 2 σ ϵ 2 ) L(\theta)=\prod\limits_{t=1}^T\dfrac{1}{\sqrt{2\pi\sigma_\epsilon^2}}exp\left( -\dfrac{(y_t-\theta_0-\sum\limits_{i=1}^q\theta_i\epsilon_{t-i})^2}{2\sigma_\epsilon^2} \right) L(θ)=t=1T2πσϵ2 1exp 2σϵ2(ytθ0i=1qθiϵti)2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

quantao_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值