【时间序列分析】12.MA(q)模型

十二、 M A ( q ) {\rm MA}(q) MA(q)模型

1. M A ( q ) {\rm MA}(q) MA(q)模型的定义

M A ( q ) {\rm MA}(q) MA(q)模型指的是滑动平均(Moving Average)模型,我们曾经在《二、线性平稳序列》中提到过MA,即有限运动平均,当时我们把白噪声的有限滑动平均定义为
X t = a 0 ε t + a 1 ε t − 1 + ⋯ + a q ε t − q , X_t=a_0\varepsilon_t+a_1\varepsilon_{t-1}+\cdots+a_q\varepsilon_{t-q}, Xt=a0εt+a1εt1++aqεtq,
现在,我们对这个定义稍加修改,就成为了 M A ( q ) {\rm MA}(q) MA(q)模型。

M A ( q ) {\rm MA}(q) MA(q)模型:设 { ε t } ∼ W N ( 0 , σ 2 ) \{\varepsilon_t\}\sim {\rm WN}(0,\sigma^2) {εt}WN(0,σ2),如果实数 b 1 , ⋯   , b q ( b q ≠ 0 ) b_1,\cdots,b_q(b_q\ne 0) b1,,bq(bq=0)使得
B ( z ) = 1 + ∑ j = 1 q b j z j ≠ 0 , ∣ z ∣ < 1 , B(z)=1+\sum_{j=1}^q b_jz^j\ne0,\quad |z|<1, B(z)=1+j=1qbjzj=0,z<1,
就称
X t = ε t + ∑ j = 1 q b j ε t − j = B ( B ) ε t , t ∈ Z X_t=\varepsilon_t+\sum_{j=1}^qb_j\varepsilon_{t-j}=B(\mathscr B)\varepsilon_t,\quad t\in\Z Xt=εt+j=1qbjεtj=B(B)εt,tZ
q q q阶滑动平均模型,即 M A ( q ) {\rm MA}(q) MA(q)模型,由它决定的平稳序列 { X t } \{X_t\} {Xt}是滑动平均序列,即 M A ( q ) {\rm MA}(q) MA(q)序列。

这个修改后的定义与原定义有以下几点不同:一是修改后的定义要求 b 0 = 1 b_0=1 b0=1,二是特征多项式 B ( z ) B(z) B(z)要求在 ∣ z ∣ < 1 |z|<1 z<1单位圆内没有零点,这样就能保证 B − 1 ( z ) B^{-1}(z) B1(z) [ 0 , 1 ) [0,1) [0,1)内始终是解析的。进一步要求 B ( z ) B(z) B(z)单位圆上也没有零点的话, B − 1 ( z ) B^{-1}(z) B1(z) [ 0 , 1 ] [0,1] [0,1]内就都解析,这时的 M A ( q ) {\rm MA}(q) MA(q)模型又叫可逆的 M A ( q ) {\rm MA}(q) MA(q)模型,相应的平稳序列被称为可逆的 M A ( q ) {\rm MA}(q) MA(q)序列。

对比 M A ( q ) {\rm MA}(q) MA(q)(Moving Average)序列与 A R ( q ) {\rm AR}(q) AR(q)(Autoregressive)序列,又有以下的区别,切勿搞混。

首先,在表现形式上, M A ( q ) {\rm MA}(q) MA(q)模型是 X t = B ( B ) ε t X_t=B(\mathscr B)\varepsilon_t Xt=B(B)εt A R ( q ) {\rm AR}(q) AR(q)模型是 A ( B ) X t = ε t A(\mathscr B)X_t=\varepsilon_t A(B)Xt=εt,这里原序列 X t X_t Xt和白噪声序列 ε t \varepsilon_t εt的位置发生了颠倒,这也导致了 M A ( q ) {\rm MA}(q) MA(q)序列是有限滑动平均序列,而 A R ( q ) {\rm AR}(q) AR(q)序列是无限滑动平均序列。自然,有限滑动平均比无限滑动平均讨论起来要更简单。

其次,二者的特征多项式也有所不同, M A ( q ) {\rm MA}(q) MA(q)的特征多项式是 B ( z ) = 1 + ⋯ B(z)=1+\cdots B(z)=1+,而 A R ( q ) {\rm AR}(q) AR(q)的特征多项式是 A ( z ) = 1 − ⋯ A(z)=1-\cdots A(z)=1,且 B ( z ) B(z) B(z)只要求在单位圆内没有零点, A ( z ) A(z) A(z)还要求单位圆上也没有零点。不过,它们的首项都是1,我们分别定义为 a 0 = 1 , b 0 = 1 a_0=1,b_0=1 a0=1,b0=1

二者有一定的相似性,但我们也可以将其联系起来,得到如下的模型:
A ( B ) X t = B ( B ) ε t , A(\mathscr B)X_t=B(\mathscr B)\varepsilon_t, A(B)Xt=B(B)εt,
这被称为 A R M A {\rm ARMA} ARMA模型,在讨论它之前,我们先对 M A ( q ) {\rm MA}(q) MA(q)模型进行进一步讨论。

2. M A ( q ) {\rm MA}(q) MA(q)序列的特征

M A ( q ) {\rm MA}(q) MA(q)序列是一个平稳序列,所以重要的是它的自协方差函数与谱密度。为了方便讨论,我们接下来都定义 b 0 = 1 b_0=1 b0=1。我们在讨论线性平稳序列的时候已经得出了MA序列的自协方差函数和谱密度,对 M A ( q ) {\rm MA}(q) MA(q)序列也适用,即
γ k = E ( X t X t + k ) = { σ 2 ∑ j = 0 q − k b j b j + k , 0 ≤ k ≤ q ; 0 , k > q . f ( λ ) = σ 2 2 π ∣ B ( e i λ ) ∣ 2 = 1 2 π ∑ j = − q q γ j e − i j λ . \gamma_k={\rm E}(X_tX_{t+k})=\left\{ \begin{array}l \sigma^2\sum\limits_{j=0}^{q-k}b_jb_{j+k},& 0\le k\le q; \\ 0,& k>q. \end{array} \right.\\ f(\lambda)=\frac{\sigma^2}{2\pi}|B(e^{{\rm i}\lambda})|^2=\frac1{2\pi}\sum_{j=-q}^q\gamma_je^{{-\rm i}j\lambda}. γk=E(XtXt+k)=σ2j=0qkbjbj+k,0,0kq;k>q.f(λ)=2πσ2B(eiλ)2=2π1j=qqγjeijλ.
注意 M A ( q ) {\rm MA}(q) MA(q)序列的自协方差函数满足 γ q = σ 2 b q ≠ 0 \gamma_q=\sigma^2b_q\ne 0 γq=σ2bq=0,但 γ k = 0 ( k > q ) \gamma_k=0(k>q) γk=0(k>q),我们称这样的平稳序列是 q q q步相关的,即间距超过 q q q的时间点都是不相关的。显然 M A ( q ) {\rm MA}(q) MA(q)是一个 q q q步相关序列,这也是它的主要特征,但巧的是,这个结论反过来也成立,即如果零均值平稳序列的自协方差函数是 q q q后截尾的,则这个平稳序列一定是 M A ( q ) {\rm MA}(q) MA(q)序列,证明如下。

引理:设实常数 { c j } \{c_j\} {cj}使得 c q ≠ 0 c_q\ne 0 cq=0 g ( λ ) = 1 2 π ∑ j = − q q c j e − i j λ ≥ 0 , λ ∈ [ − π , π ] g(\lambda)=\dfrac1{2\pi}\sum\limits_{j=-q}^q c_je^{-{\rm i}j\lambda}\ge 0,\lambda\in[-\pi,\pi] g(λ)=2π1j=qqcjeijλ0,λ[π,π],则存在唯一的实系数多项式 B ( z ) = 1 + ∑ j = 1 q b j z j ≠ 0 B(z)=1+\sum\limits_{j=1}^qb_jz^j\ne 0 B(z)=1+j=1qbjzj=0,使得 g ( λ ) = σ 0 2 2 π ∣ B ( e i λ ) ∣ 2 g(\lambda)=\dfrac{\sigma_0^2}{2\pi}|B(e^{{\rm i}\lambda})|^2 g(λ)=2πσ02B(eiλ)2,这里 σ 0 \sigma_0 σ0是某个正常数。

定理:设零均值平稳序列 { X t } \{X_t\} {Xt}有自协方差函数 { γ k } \{\gamma_k\} {γk},则 { X t } \{X_t\} {Xt} M A ( q ) {\rm MA}(q) MA(q)序列的充要条件是
γ q ≠ 0 , γ k = 0 , ∣ k ∣ > q . \gamma_q\ne 0,\quad \gamma_k=0,|k|>q. γq=0,γk=0,k>q.
必要性显然,下证充分性,即由自协方差函数 q q q后截尾推出 { X t } \{X_t\} {Xt} M A ( q ) {\rm MA}(q) MA(q)序列。由反演公式,此时 { X t } \{X_t\} {Xt}的谱密度是
f ( λ ) = 1 2 π ∑ k = − q q γ k e − i k λ ≥ 0 , λ ∈ [ − π , π ] . f(\lambda)=\frac1{2\pi}\sum_{k=-q}^q\gamma_ke^{-{\rm i}k\lambda}\ge0,\quad \lambda\in[-\pi,\pi]. f(λ)=2π1k=qqγkeikλ0,λ[π,π].
由引理得知,存在一组实数 b 1 , ⋯   , b q b_1,\cdots,b_q b1,,bq满足 b q > 0 b_q>0 bq>0和正数 σ 2 > 0 \sigma^2>0 σ2>0,使得
B ( z ) = 1 + ∑ j = 1 q b j z j , f ( λ ) = σ 2 2 π ∣ B ( e i λ ) ∣ 2 . B(z)=1+\sum_{j=1}^qb_jz^j, \quad f(\lambda)=\frac{\sigma^2}{2\pi}|B(e^{{\rm i}\lambda})|^2. B(z)=1+j=1qbjzj,f(λ)=2πσ2B(eiλ)2.
接下来我们要证明 f ( λ ) f(\lambda) f(λ)是某个 M A ( q ) {\rm MA}(q) MA(q)序列的谱密度,也就是要构造出某个白噪声序列 { ε t } \{\varepsilon_t\} {εt}使得 X t = B ( B ) ε t X_t=B(\mathscr B)\varepsilon_t Xt=B(B)εt。为此,我们构造 ε t = B − 1 ( B ) X t \varepsilon_t=B^{-1}(\mathscr B)X_t εt=B1(B)Xt,因为如此,必定有 B ( B ) ε t = X t B(\mathscr B)\varepsilon_t=X_t B(B)εt=Xt,所以我们只要能证明它是白噪声即可。

假设 B − 1 ( z ) B^{-1}(z) B1(z)Taylor级数的系数是 { h j } \{h_j\} {hj},则由 B ( z ) B(z) B(z)的解析性, h j h_j hj绝对可和,所以
ε t = B − 1 ( B ) X t = ∑ j = 0 ∞ h j X t − j , t ∈ Z , \varepsilon_t=B^{-1}(\mathscr B)X_t=\sum_{j=0}^\infty h_jX_{t-j},\quad t\in\Z, εt=B1(B)Xt=j=0hjXtj,tZ,
此时 { ε t } \{\varepsilon_t\} {εt}是一个线性滤波,由线性滤波的谱密度,有
f ε ( λ ) = ∣ ∑ j = 0 ∞ h j e − i λ ∣ 2 f ( λ ) = ∣ B ( e − i λ ) ∣ − 2 σ 2 2 π ∣ B ( e − i λ ) ∣ 2 = σ 2 2 π , f_\varepsilon(\lambda)=\left|\sum_{j=0}^\infty h_je^{-{\rm i}\lambda} \right|^2f(\lambda)=|B(e^{-{\rm i}\lambda})|^{-2}\frac{\sigma^2}{2\pi}|B(e^{-{\rm i}\lambda})|^2=\frac{\sigma^2}{2\pi}, fε(λ)=j=0hjeiλ2f(λ)=B(eiλ)22πσ2B(eiλ)2=2πσ2,
这就说明 ε t \varepsilon_t εt是一个 W N ( 0 , σ 2 ) {\rm WN}(0,\sigma^2) WN(0,σ2)

这样,我们判断一个平稳序列是不是一个 M A ( q ) {\rm MA}(q) MA(q)序列,只要观察其自协方差函数是不是 q q q后截尾的就行了。但问题是,即使我们判断出了它是一个 M A ( q ) {\rm MA}(q) MA(q)序列,要如何从观测样本得到它的特征多项式 B ( z ) B(z) B(z)呢?

3. M A ( q ) {\rm MA}(q) MA(q)系数的递推计算

在实际生活中, γ 0 , ⋯   , γ q \gamma_0,\cdots,\gamma_q γ0,,γq是可以被观测获得的样本近似估计的,而 b 1 , ⋯   , b q , σ 2 b_1,\cdots,b_q,\sigma^2 b1,,bq,σ2却不能够直接获得,要对现实中的 M A ( q ) {\rm MA}(q) MA(q)序列进行研究,肯定要得到其特征多项式与白噪声方差。注意到 γ 0 , ⋯   , γ q \gamma_0,\cdots,\gamma_q γ0,,γq的数量与 b 1 , ⋯   , b q , σ 2 b_1,\cdots,b_q,\sigma^2 b1,,bq,σ2的数量相等,都是 q + 1 q+1 q+1个,因此由自协方差函数估计 M A ( q ) {\rm MA}(q) MA(q)系数和白噪声方差是可能的。

如果列出 γ k \gamma_k γk的计算式,即 γ k = σ 2 ∑ j = 0 q − k b j b j + k \gamma_k=\sigma^2\sum\limits_{j=0}^{q-k}b_jb_{j+k} γk=σ2j=0qkbjbj+k,我们可以得到 q + 1 q+1 q+1个方程,即
{ σ 2 = γ 0 1 + b 1 2 + ⋯ + b q 2 , b k = γ k σ 2 − ( b 1 b k + 1 + b 2 b k + 2 + ⋯ + b q − k b q ) , 1 ≤ k ≤ q − 1 , b q = γ q σ 2 . \left\{ \begin{array}l \sigma^2=\dfrac{\gamma_0}{1+b_1^2+\cdots+b_q^2}, \\ b_k=\dfrac{\gamma_k}{\sigma^2}-(b_1b_{k+1}+b_2b_{k+2}+\cdots+b_{q-k}b_q),&1\le k\le q-1, \\ b_q=\dfrac{\gamma_q}{\sigma^2}. \end{array} \right. σ2=1+b12++bq2γ0,bk=σ2γk(b1bk+1+b2bk+2++bqkbq),bq=σ2γq.1kq1,
这个方程是一个非线性方程组,可以用牛顿迭代法求解,这里对教科书上的方式进行抄录。

定义
Ω k = [ γ 1 γ 2 ⋯ γ k γ 2 γ 3 ⋯ γ k + 1 ⋮ ⋮ ⋮ γ q γ q + 1 ⋯ γ k + q − 1 ] = ( γ i + j − 1 ) q × k , γ q = [ γ 1 γ 2 ⋮ γ q ] , Π = lim ⁡ k → ∞ Ω k Γ k − 1 Ω k ′ . \Omega_k=\begin{bmatrix} \gamma_1 & \gamma_2 & \cdots & \gamma_k \\ \gamma_2 & \gamma_3 & \cdots & \gamma_{k+1} \\ \vdots & \vdots & & \vdots \\ \gamma_q & \gamma_{q+1} & \cdots & \gamma_{k+q-1} \end{bmatrix}=(\gamma_{i+j-1})_{q\times k},\quad \boldsymbol \gamma_q=\begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_q \end{bmatrix},\quad \Pi=\lim_{k\to \infty}\Omega_k\Gamma_k^{-1}\Omega_k'. Ωk=γ1γ2γqγ2γ3γq+1γkγk+1γk+q1=(γi+j1)q×k,γq=γ1γ2γq,Π=klimΩkΓk1Ωk.
注意 Ω k \Omega_k Ωk不是自协方差矩阵,甚至不是方阵,而是一个 q × k q\times k q×k矩阵,即不定列数的 q q q行矩阵。再定义
A = [ 0 1 0 ⋯ 0 0 0 0 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 0 1 0 0 0 ⋯ 0 0 ] q × q , C = [ 1 0 ⋮ 0 ] q × 1 . A=\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}_{q\times q},\quad C=\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}_{q\times 1}. A=00001000010000000010q×q,C=100q×1.
b q = ( b 1 , ⋯   , b q ) ′ \boldsymbol b_q=(b_1,\cdots,b_q)' bq=(b1,,bq)
b q = 1 σ 2 ( γ q − A Π C ) , σ 2 = γ 0 − C ′ Π C . \boldsymbol b_q=\frac{1}{\sigma^2}(\boldsymbol \gamma_q-A\Pi C),\quad \sigma^2=\gamma_0-C'\Pi C. bq=σ21(γqAΠC),σ2=γ0CΠC.
有了这个方法,我们就可以对 M A ( q ) {\rm MA}(q) MA(q)序列的观测样本求特征多项式了。

回顾总结

  1. M A ( q ) {\rm MA}(q) MA(q)模型是这样一种模型: X t = B ( B ) ε t X_t=B(\mathscr B)\varepsilon_t Xt=B(B)εt,其中
    B ( z ) = 1 + ∑ j = 1 q b j z j = ∑ j = 0 q b j z j , B ( z ) ≠ 0 , ∣ z ∣ < 1. B(z)=1+\sum_{j=1}^qb_jz^j=\sum_{j=0}^qb_jz^j,\quad B(z)\ne 0,|z|<1. B(z)=1+j=1qbjzj=j=0qbjzj,B(z)=0,z<1.
    如果进一步要求 B ( z ) ≠ 0 , ∣ z ∣ ≤ 1 B(z)\ne0,|z|\le1 B(z)=0,z1,则这被称为可逆 M A ( q ) {\rm MA}(q) MA(q)模型,对应的序列为 M A ( q ) {\rm MA}(q) MA(q)序列和可逆的 M A ( q ) {\rm MA}(q) MA(q)序列。

  2. M A ( q ) {\rm MA}(q) MA(q)序列的自协方差函数是 q q q后截尾的,即
    γ k = σ 2 ∑ j = 0 q − k b j b j + k , 1 ≤ k ≤ q − 1 , γ k = 0 , k ≥ q . \gamma_k=\sigma^2\sum_{j=0}^{q-k}b_jb_{j+k},\quad 1\le k\le q-1, \\ \gamma_k=0,\quad k\ge q. γk=σ2j=0qkbjbj+k,1kq1,γk=0,kq.
    其谱密度为
    f ( λ ) = σ 2 2 π ∣ B ( e i λ ) ∣ 2 = 1 2 π ∑ j = − q q γ j e − i j λ . f(\lambda)=\frac{\sigma^2}{2\pi}|B(e^{{\rm i}\lambda})|^2=\frac{1}{2\pi}\sum_{j=-q}^q\gamma_je^{-{\rm i}j\lambda}. f(λ)=2πσ2B(eiλ)2=2π1j=qqγjeijλ.

  3. 如果一个零均值平稳序列是 q q q后截尾的,则这是一个 M A ( q ) {\rm MA}(q) MA(q)序列,换言之,零均值 M A ( q ) {\rm MA}(q) MA(q)序列的充要条件是自协方差函数 q q q后截尾。

  4. M A ( q ) {\rm MA}(q) MA(q)系数的反推:设 A q × q A_{q\times q} Aq×q是主对角线上方的元素为1,其他元素为0的 q × q q\times q q×q方阵, C q × 1 C_{q\times 1} Cq×1是第一个元素为1,其他元素为0的列向量,再定义 Ω k = ( γ i + j − 1 ) q × k \Omega_k=(\gamma_{i+j-1})_{q\times k} Ωk=(γi+j1)q×k和自协方差向量 γ k \boldsymbol \gamma_k γk,就有
    Π q × q = lim ⁡ k → ∞ Ω k Γ k − 1 Ω k ′ , b q = 1 σ 2 ( γ k − A Π C ) , σ 2 = γ 0 − C ′ Π C . \Pi_{q\times q}=\lim_{k\to \infty}\Omega_k\Gamma_k^{-1}\Omega_k',\quad \boldsymbol b_q=\frac{1}{\sigma^2}(\boldsymbol \gamma_k-A\Pi C),\quad \sigma^2=\gamma_0-C'\Pi C. Πq×q=klimΩkΓk1Ωk,bq=σ21(γkAΠC),σ2=γ0CΠC.

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值